Динамика эффективности фиксации CO 2 штаммом Bracteacoccus minor при различной доступности азота
Автор: Кочубей А.В., Мальцева И.А., Мальцев Е.И., Яковийчук А.В.
Журнал: Вестник Пермского университета. Серия: Биология @vestnik-psu-bio
Рубрика: Ботаника
Статья в выпуске: 4, 2024 года.
Бесплатный доступ
Чрезмерное выделение и накопление углекислого газа в атмосфере является серьезной проблемой, имеющей ряд негативных экологических последствий, включая глобальное потепление. Для борьбы с этими последствиями используются различные подходы, при этом основное внимание уделяется сокращению выбросов углекислого газа и достижению нулевого углеродного баланса. В дополнение к сокращению добычи и использованию ископаемых видов топлива в качестве потенциального решения рассматривается биосеквестрация. Микроводоросли особенно перспективны в этом отношении, поскольку они могут служить поглотителями углекислого газа при использовании в биотехнологических процессах. Некоторые штаммы микроводорослей, например, из рода Bracteacoccus Tereg, были изучены на предмет их способности синтезировать ценные продукты, хотя способность поглощать углекислый газ данными объектами не изучалась, в частности при изменении концентрация доступного азота в питательной среде. В ходе исследования было установлено, что высокие уровни биодоступного азота увеличивают среднюю скорость поглощения углекислого газа, в то время как максимальное поглощение происходит, когда культура выходит из lag-фазы. Скорость фиксации углекислого газа и его количество, поглощенное Bracteacoccus minor (MZ-Ch31), напрямую зависят от продуктивности биомассы и концентрации хлорофилла.
Биосеквестрация, биомасса, продуктивность, хлорофилл, среда культивирования, bbm, 3n bbm, f, f2
Короткий адрес: https://sciup.org/147247240
IDR: 147247240 | DOI: 10.17072/1994-9952-2024-4-366
Список литературы Динамика эффективности фиксации CO 2 штаммом Bracteacoccus minor при различной доступности азота
- Adamczyk M., Lasek J., Skawinska A. CO2 biofixation and growth kinetics of Chlorella vulgaris and Nannochloropsis gaditana // Applied Biochemistry and Biotechnology. 2016. Vol. 179, № 7. P. 1248-1261.
- Barkia I., Saari N., Manning S.R. Microalgae for high-value products towards human health and nutrition // Marine drugs. 2019. Vol. 17, № 5. Art. 304.
- Butti S.K., Venkata Mohan S. Photosynthetic and lipogenic response under elevated CO2 and H2 conditions - high carbon uptake and fatty acids unsaturation // Frontiers in Energy Research. 2018. Vol. 6. Art. 27.
- Cheah W.Y. et al. Biosequestration of atmospheric CO2 and flue gas-containing CO2 by microalgae // Bio-resource technology. 2015. Vol. 184. P. 190-201.
- Chen X. et al. Nitrogen starvation enhances the production of saturated and unsaturated fatty acids in Aurantio-chytrium sp. PKU#SW8 by regulating key biosynthetic genes // Marine drugs. 2022. Vol. 20, № 10. Art. 621.
- Chekanov K. et al. Differential responses to UV-A stress recorded in carotenogenic microalgae Haemato-coccus rubicundus, Bracteacoccus aggregatus, and Deasonia sp. // Plants. 2022. Vol. 11, № 11. Art. 1431.
- Cherepovitsyna A.A., Dorozhkina I.P., Kostyleva V.N. Sequestration and use of carbon dioxide: the essence of technology and approaches to the classification of the projects // Russian Journal of Industrial Economics. 2023. Vol. 15, № 4. P. 473-487.
- Coulombier N., Jauffrais T., Lebouvier N. Antioxidant compounds from microalgae: a review // Marine drugs. 2021. Vol. 19, № 10. Art. 549.
- Dolganyuk V. et al. Microalgae: A promising source of valuable bioproducts // Biomolecules. 2020. Vol. 10, № 8. Art. 1153.
- Fan L.-H. et al. Evaluation of a membrane-sparged helical tubular photobioreactor for carbon dioxide biofixation by Chlorella vulgaris // Journal of Membrane Science. 2008. Vol. 325, № 1. P. 336-345.
- Farooq W. Maximizing energy content and CO2 bio-fixation efficiency of an indigenous isolated micro-alga Parachlorella kessleri HY-6 through nutrient optimization and water recycling during cultivation // Front. Bioeng. Biotechnol. 2022. Vol. 10, № 9. Art. 804608.
- Harwati T.U., Willke T., Vorlop K.D. Characterization of the lipid accumulation in a tropical freshwater microalgae Chlorococcum sp. // Bioresource Technology. 2018. Vol. 121. P. 54-60.
- Ho S.-H. et al. Perspectives on microalgal CO2-emission mitigation systems - A review // Biotechnology Advances. 2011. Vol. 29, № 2. P. 189-198.
- Janssen J.H., Wijffels R.H., Barbosa M.J. Lipid production in Nannochloropsis gaditana during nitrogen starvation // Biology. 2019. Vol. 8, № 1. Art. 5.
- Li S. et al. Production of sustainable biofuels from microalgae with CO2 bio-sequestration and life cycle assessment // Environmental research. 2023. Vol. 227. Art.115730.
- Lukavsky J. et al. The alga Bracteacoccus bullatus (Chlorophyceae) isolated from snow, as a source of oil comprising essential unsaturated fatty acids and carotenoids // Journal of Applied Phycology. 2022. In Review. preprint. DOI: 10.21203/rs.3.rs-2125780/v1.
- Ma Z. et al. Microalgae-based biotechnological sequestration of carbon dioxide for net zero emissions // Trends in biotechnology. 2022. Vol. 40, № 12. P. 1439-1453.
- Malik S. et al. Characterization of a newly isolated self-flocculating microalga Bracteacoccus pseudomi-nor BERC09 and its evaluation as a candidate for a multiproduct algal biorefinery // Chemosphere. 2022. Vol. 304. Art. 135346.
- Maltsev Y.I. et al. Biotechnological potential of a new strain of Bracteacoccus bullatus (Sphaeropleales, Chlorophyta) as a promising producer of omega-6 polyunsaturated fatty acids // Russian Journal of Plant Physiology. 2020. Vol. 67. P. 185-193.
- Mamaeva A. et al. Simultaneous increase in cellular content and volumetric concentration of lipids in Bracteacoccus bullatus cultivated at reduced nitrogen and phosphorus concentrations // Journal of Applied Phy-cology. 2018. Vol. 30. P. 2237-2246.
- Minyuk G.S., Chelebieva E.S., Chubchikova I.N. Secondary carotenogenesis of the green microalga Bracteacoccus minor (Chodat) Petrova (Chlorophyta) in a two-stage culture // International Journal on Algae. 2014. Vol. 16, № 4. P. 354-368.
- Morais M.G., Costa J.A.V. Carbon dioxide mitigation with Chlorella kessleri, Chlorella vulgaris, Scenedesmus obliquus and Spirulina sp. cultivated in flasks and vertical tubular photobioreactors // Biotechnol. Lett. 2007. Vol. 29. P. 1349-1352.
- Mudimu O. et al. Screening of microalgae and cyanobacteria strains for a-tocopherol content at different growth phases and the influence of nitrate reduction on a-tocopherol production // Journal of Applied Phycology. 2017. Vol. 29. P. 2867-2875.
- Murakami M., Ikenouchi M. The biological CO2 fixation and utilization project by rite (2) - screening and breeding of microalgae with high capability in fixing CO2 - // Energy Conversion and Management. 1997. Vol. 38. P. 493-497.
- Ramos-Romero S. et al. Edible microalgae and their bioactive compounds in the prevention and treatment of metabolic alterations // Nutrients. 2021. Vol. 13, № 2. Art. 563.
- Ratha S.K. et al. Exploring nutritional modes of cultivation for enhancing lipid accumulation in microalgae: Exploring nutritional modes of cultivation // Journal of Basic Microbiology. 2013. Vol. 53, № 5. P. 440450.
- Rios L.F. et al. Nitrogen starvation for lipid accumulation in the microalga species Desmodesmus sp. // Applied biochemistry and biotechnology. 2015. Vol. 175, № 1. P. 469-476.
- Sangeetha M. et al. Biosequestration of carbon dioxide using carbonic anhydrase from novel Streptomy-ces kunmingensis // Archives of microbiology. 2022. Vol. 204, № 5. Art. 270.
- §irin P. A., Serdar S. Effects of nitrogen starvation on growth and biochemical composition of some microalgae species // Folia microbiologica. 2024. Vol. 69, № 4. Р. 889-902.
- Venkata Mohan S. et al. A circular bioeconomy with biobased products from CO2 sequestration // Trends in biotechnology. 2016. Vol. 34, № 6. P. 506-519.
- White W.A. Biosequestration and ecological diversity. Boca Raton: CRC Press, 2012. 250 p.
- Yang C.-M. et al. Methods for the determination of the chlorophylls and their derivatives // Taiwania. 1998. Vol. 43, № 2. P. 116-122.
- Zhang W.W. et al. Enhancing astaxanthin accumulation in Haematococcus pluvialis by coupled light intensity and nitrogen starvation in column photobioreactors // Journal of microbiology and biotechnology. 2018. Vol. 28, № 12. P. 2019-2028.
- Zhao Y. et al. Screening and application of Chlorella strains on biosequestration of the power plant exhaust gas evolutions of biomass growth and accumulation of toxic agents // Environmental science and pollution research international. 2022. Vol. 29, № 5. P. 6744-6754.
- Zhu X. et al. An informatics-based analysis of developments to date and prospects for the application of microalgae in the biological sequestration of industrial flue gas // Applied microbiology and biotechnology. 2016. Vol. 100, № 5. P. 2073-2082.