Динамика содержания общего белка, гемоцианина и активности антиоксидантных ферментов в условиях острой гипертермии у легочного моллюска Lymnaea stagnalis

Автор: Хомич А.С., Голубев А.П., Аксенов-грибанов Д.В., Бодиловская О.А., Широкова И.А., Лубяга И.А., Шатилина З.М.

Журнал: Журнал стресс-физиологии и биохимии @jspb

Статья в выпуске: 1 т.14, 2018 года.

Бесплатный доступ

Была оценена динамика содержания общего белка и гемоцианина в гемолимфе, а также активность антиоксидантных ферментов (пероксидаза, каталаза и глутатион-S-трансфераза) в легочном моллюске Lymnaea stagnalis (Linnaeus, 1758) под воздействием острого температурного стресса. , Показано, что воздействие острого термического стресса (30 ° С) приводит к активации физиологических механизмов стрессоустойчивости и не влияет на активность антиоксидантных ферментов в исследуемой популяции моллюсков.

Короткий адрес: https://sciup.org/143165193

IDR: 143165193

Список литературы Динамика содержания общего белка, гемоцианина и активности антиоксидантных ферментов в условиях острой гипертермии у легочного моллюска Lymnaea stagnalis

  • Aebi H. (1984) Catalase in vitro. Methods Enzymol., 105, 121-126
  • Axenov-Gribanov D., Vereshchagina K., Lubyaga Y., Gurkov A., Bedulina D., Shatilina Z., Homich A., Golubev A. and Timofeyev M. (2015) Stress response at the cellular and biochemical levels indicates the limitation of the environmental temperature range for Eastern Siberia populations of the common gastropod Limnaea stagnalis. Malacologia, 59(1), 33-44
  • Axenov-Gribanov D.V., Khomich A.S., Bodilovskaya O.A., Kondratieva E.S., Lubyaga Y.A., Shatilina Z.M., Emshanova V.A. and Golubev A.P. (2016) The estimation of the antioxidant enzymes activity in representatives of different populations of Lymnaea stagnalis differ in the degree of infestation under temperature stress. J. Stress Physiol. Biochem., 12(3), 84-91
  • Becker M.I., Arancibia S., Salazar F., Del Campo M. and De Ioannes A. (2014). Mollusk hemocyanins as natural immunostimulants in biomedical applications, immune response activation, Dr. Ht Duc (Ed.), InTech. Available from: https://www.intechopen.com/books/immune-response-activation/mollusk-hemocyanins-as-natural-immunostimulants-in-biomedical-applications
  • Bradford M.M. (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem., 72(1-2), 248-254
  • Camargo J.A. and Alonso Á. (2006) Ecological and toxicological effects of inorganic nitrogen pollution in aquatic ecosystems: A global assessment. Environ. Int., 32(6), 831 -849
  • Coates C. J. and Nairn J. (2014). Diverse immune functions of hemocyanins. Dev. Comp. Immunol., 45(1), 43-55
  • Coates C.J., Bradford E.L., Krome C.A. and Nairn J. (2012) Effect of temperature on biochemical and cellular properties of captive Limulus polyphemus. Aquaculture, 334-337, 30-38
  • Conley D. J., Carstensen J., Aertebjerg G., Christensen P.B., Dalsgaard T., Hansen J.L.S. and Josefson A.B. (2007) Long-term changes and impacts of hypoxia in Danish coastal waters. Ecol Appl., 17, 165-184
  • Courrat A., Lobry J., Nicolas D., Laffargue P., Amara R., Lepage M., Girardin M. and Le Pape O. (2009) Anthropogenic disturbance on nursery function of estuarine areas for marine species. Estuar Coast Shelf Sci., 81, 179-190
  • Drotar A., Phelps P. and Fall R. (1985) Evidence for glutathione peroxidase activities in cultured plant cells. Plant Sci., 42, 35 -40
  • Foster N.L., Lukowiak K. and Henry T.B. (2015) Time-related expression profiles for heat shock protein gene transcripts (HSP40, HSP70) in the central nervous system of Lymnaea stagnalis exposed to thermal stress. Commun. Integr. Biol., 8, DOI: 10.1080/19420889.2015.1040954
  • Giomi F. and Poertner H. (2013) A role for haemolymph oxygen capacity in heat tolerance of eurythermal crabs. Front. Physiol., 4, 110-121
  • Gnatishina L.L., Falfushinskaya G.I., Golubev O.P., Dallinger R. and Stoliar O.B. (2011) Role of metallothioneins in adaptation of Lymnaea stagnalis (Mollusca: Pulmonata) to environment pollution. Hydrobiol. J., 47(5). 56-66
  • Golubev A. P., Bodilovskaya O. A., Khomich A. S., Korotchikova N. V., Vereshchagina K. P., Lubyaga Y. A., Shchapova E. P., Shatilina Z. M. and Axenov-Gribanov D. V. (2015) The influence of trematode invasion on the thermoresistance of Lymnaea stagnalis (Gastropoda, Pulmonata) population from the floodplain reservoir of Angara river. J. Stress Physiol. Biochem., 11(2), 28-39
  • Golubev A., Afonin V., Maksimova S. and Androsov V. (2005) The current state of pond snail Lymnaea stagnalis (Gastropoda, Pulmonata) populations from water reservoirs of the Chernobyl nuclear accident zone. Radioprotection, 40(1), 511-517
  • Golubev A.P. (1995) Thermotholerance and radioresistance in population of Lymnaea stagnalis (Gastropoda, Pulmonata) from reservoir with different forms of anthropogenic load. Rep. Acad. Sci., 342(2), 280 -283
  • Gust M., Fortier M., Garric J., Fournie M. and Gange F. (2013) Immunotoxicity of surface waters contaminated by municipal effluents to the snail Lymnaea stagnalis. Aquat. Toxicol., 126, 393-403
  • Habig W.H., Pabst M.J. and Jakoby W.B. (1974) Glutathione S-Transferases: The first enzymatic step in mercapturic acid formation. J. Biol. Chem., 249, 7130 -7139
  • Hochachka P. W. and Somero G. N. (2014) Biochemical Adaptation. Princeton Legacy Library, 560 p
  • Jürgen M. (2013) Evolution of molluscan hemocyanin structures. BBA Proteins and Proteomics, 1834(9), 1840-1852
  • Kennish M.J. (2002) Environmental threats and environmental future of estuaries. Environ. Conserv., 29, 78-107
  • Khmeleva N.N., Golubev A.P. and Laenko T.M. (1985) Ecology of pulmonate mollusks from heat sources of Kamchatka. J. General Biol., 46(2), 230-240
  • Khomich A.S., Axenov-Gribanovb D. V., Bodilovskaya O. A., Shirokova Y. A., Shchapova E. P., Lubyaga Y. A., Shatilina Z. M., Emshanova V. A. and Golubev. A. P. (2017) Assessment of the joint effect of thermal stress, pollution, and parasitic infestation on the activity of antioxidative enzymes in pulmonate mollusk Lymnaea stagnalis. Contemp. Probl. Ecol., 10(2),184-192
  • Lushchak V.I. (2011) Environmentally induced oxidative stress in aquatic animals. Aquat. Toxicol., 101(1), 13-30
  • Madeira D., Narciso L., Cabral H.N., Vinagre C. and Diniz M.S. (2013) Influence of temperature in thermal and oxidative stress responses in estuarine fish. Comp. Biochem. Physiol. A Mol. Integr. Physiol., 166(2), 237-243
  • Nickerson K. W. and Van Holde K. E. (1971) A comparison of molluscan and arthropod hemocyanin. I. Circular dichroism and absorption spectra. Comp. Biochem. Physiol., 39B, 855-872
  • Niinemets Ü., Kahru A., Nõges P., Tuvikene A., Vasemägi A., Mander Ü. and Nõges T. (2017) Environmental feedbacks in temperate aquatic ecosystems under global change: why do we need to consider chemical stressors? Reg. Environ. Change., 17(7), 2079-2096
  • Paul R.J. and Pirow R. (1998) The physiological significance of respiratory proteins in invertebrates. Zoology, 100, 298-306
  • Ray P.D., Huang B-W. and Tsuji Y. (2012) Reactive oxygen species (ROS) homeostasis and redox regulation in cellular signaling. Cell. Signal., 24(5), 981-990
  • Reategui-Zirena E. G., French A. D., Klein D. M., and Salice C. J. (2017) Cadmium compartmentalization in the pulmonate snail Lymnaea stagnalis: improving our understanding of exposure. Environ. Contam. Toxicol., 72(4), 575-585
  • Sidorov A. V. (2005) Effect of acute temperature change on lung respiration of the mollusc Lymnaea stagnalis. J. Therm. Biol., 30. 163-171
  • Sidorov A.V. (2003) The effect of temperature on respiration, defensive reactions and the locomotor behavior of the freshwater pulmonate mollusk Lymnaea stagnalis. Pavlov J. High. Nerv. Act., 4, 513-517
  • Vasconcelos R.P., Reis-Santos P., Fonseca V., Maia A., Ruano M., Franza S., Vinagre C., Costa M.J. and Cabral H. (2007) Assessing anthropogenic pressures on estuarine fish nurseries along the Portuguese coast: A multi-metric index and conceptual approach. Sci. Total Environ., 374, 199-215
  • Verlecar X.N., Jena K.B. and Chainy G.B.N. (2007) Biochemical markers of oxidative stress in Perna viridis exposed to mercury and temperature. Chem. Biol. Interact., 167(3), 219-226
  • Vinagrea C., Madeira D., Narciso L., Henrique N. and Diniz C. M. (2012) Effect of temperature on oxidative stress in fish: Lipid peroxidation and catalase activity in the muscle of juvenile seabass, Dicentrarchus labrax. Ecol Indic., 23, 274-279
  • Zuykov M., Pelletier E. and Harper D.A.T. (2013) Bivalve mollusks in metal pollution studies: From bioaccumulation to biomonitoring. Chemosphere, 93(2), 201-208
Еще
Статья научная