Дисфункция эпителиального барьера при бронхиальной астме

Автор: Храмова Р. Н., Елисеева Т. И., Потмина Т. Е.

Журнал: Вестник медицинского института "РЕАВИЗ": реабилитация, врач и здоровье @vestnik-reaviz

Рубрика: Морфология. Патология

Статья в выпуске: 4 (58), 2022 года.

Бесплатный доступ

В основе патогенеза бронхиальной астмы лежит хроническое воспаление как ответ на этиологические факторы. Оно обуславливает бронхиальную гиперреактивность, ремоделирование дыхательных путей и гиперсекрецию слизи. Повреждение эпителия является патологическим признаком, наблюдаемым при всех фенотипах бронхиальной астмы. Цель данного обзора: провести анализ изменений в эпителиальном барьере при бронхиальной астме, отразить потенциальные терапевтические пути воздействия. Изменения в эпителиальном барьере включают в себя нарушение соотношения муцинов (MUC5AC к MUC5B), нарушения межклеточных соединений при воздействии аллергенов, инфекционных агентов, взвешенных частиц. В настоящее время разрабатываются различные диагностические подходы для обнаружения дисфункции эпителиального барьера. Воздействие на эпителиальный барьер дыхательных путей может стать многообещающей новой терапевтической стратегией при астме и связанных с ней аллергических заболеваниях. Сохранение или восстановление функции барьера дыхательных путей является новой областью респираторных заболеваний, требующей обширных дальнейших исследований.

Еще

Эпителиальный барьер, дисфункция, бронхиальная астма

Короткий адрес: https://sciup.org/143179120

IDR: 143179120   |   DOI: 10.20340/vmi-rvz.2022.4.MORPH.3

Список литературы Дисфункция эпителиального барьера при бронхиальной астме

  • GINA, "Global Initiative for Asthma - GINA 2021," Ginasthma.org, 2021.
  • Innes Asher M., García-Marcos L., Pearce N.E., Strachan D.P. Trends in worldwide asthma prevalence. Eur. Respir. J. 2020;56(6). https://doi.org/10.1183/13993003.02094-2020
  • Svenningsen S., Nair P. Asthma endotypes and an overview of targeted therapy for asthma. Frontiers in Medicine. 2017 SEP.;4. https://doi.org/10.3389/fmed.2017.00158
  • Fahy J.V. Type 2 inflammation in asthma-present in most, absent in many. Nature Reviews Immunology. 2015;15(1). https://doi.org/ 10.1038/nri3786
  • Papi A., Saetta M., Fabbri L. Severe asthma: Phenotyping to endotyping or vice versa? 2017;49(2). https://doi.org/10.1183/13993003.00053-2017.
  • Xiao C. et al. Defective epithelial barrier function in asthma. J. Allergy Clin. Immunol. 2011;128(3). https://doi.org/10.1016Zj.jaci.2011.05.038
  • Ridley C., Thornton D.J. Mucins: The frontline defence of the lung. Biochemical Society Transactions. 2018;46(5). https://doi.org/10.1042/BST20170402
  • Steelant B. Epithelial dysfunction in chronic respiratory diseases, a shared endotype? Current opinion in pulmonary medicine. 2020;26(1). https://doi.org/10.1097/MCP.0000000000000638
  • Hammad H., Lambrecht B.N. Barrier Epithelial Cells and the Control of Type 2 Immunity. Immunity. 2015;43(1). https://doi.org/10.1016/jjmmuni.2015.07.007
  • Davies D.E. Epithelial barrier function and immunity in asthma. Ann. Am. Thorac. Soc. 2014;11. https://doi.org/10.1513/AnnalsATS.201407-304AW
  • Radicioni G. et al. Airway mucin MUC5AC and MUC5B concentrations and the initiation and progression of chronic obstructive pulmonary disease: an analysis of the SPIROMICS cohort. Lancet Respir. Med. 2021;9(11). https://doi.org/10.1016/S2213-2600(21)00079-5
  • Bonser L.R., Erle D.J. Airway mucus and asthma: The role of MUC5AC and MUC5B. Journal of Clinical Medicine. 2017;6(12). https://doi.org/10.3390/jcm6120112
  • Hellings P.W., Steelant B. Epithelial barriers in allergy and asthma. Journal of Allergy and Clinical Immunology. 2020;145(6). https://doi.org/10.1016/j.jaci.2020.04.010
  • Shen L., Weber C.R., Raleigh D.R., Yu D., Turner J.R. Tight junction pore and leak pathways: A dynamic duo. Annu. Rev. Physiol. 2011;73. https://doi.org/10.1146/annurev-physiol-012110-142150
  • Hartsock A., Nelson W.J. Adherens and tight junctions: Structure, function and connections to the actin cytoskeleton. Biochimica et Biophysica Acta - Biomembranes. 2008;1778(3). https://doi.org/10.1016/j.bbamem.2007.07.012
  • Ganesan S., Comstock A.T., Sajjan U.S. Barrier function of airway tract epithelium. Tissue Barriers. 2013;1(4). https://doi.org/10.4161/tisb.24997
  • Shahana S. et al. Ultrastructure of bronchial biopsies from patients with allergic and non-allergic asthma. Respir. Med. 2005;99(4). https://doi.org/10.1016/j.rmed.2004.08.013
  • Fang L., Sun Q., Roth M. Immunologic and non-immunologic mechanisms leading to airway remodeling in asthma. International Journal of Molecular Sciences. 2020;21 (3). https://doi.org/10.3390/ijms21030757
  • Higashi T., Arnold T.R., Stephenson R.E., Dinshaw K.M., Miller A.L. Maintenance of the Epithelial Barrier and Remodeling of Cell-Cell Junctions during Cytokinesis. Curr. Biol. 2016;26(14). https://doi.org/10.1016/j.cub.2016.05.036
  • Sugita K. et al. Outside-in hypothesis revisited: The role of microbial, epithelial, and immune interactions. Annals of Allergy, Asthma and Immunology. 2020;125(5). https://doi.org/10.1016/j.anai.2020.05.016
  • Mitamura Y. et al. Dysregulation of the epithelial barrier by environmental and other exogenous factors. Contact Dermatitis. 2021;85(6). https://doi.org/10.1111/cod.13959
  • Heijink I.H. et al. Epithelial cell dysfunction, a major driver of asthma development. Allergy: European Journal of Allergy and Clinical Immunology. 2020;75(8). https://doi.org/10.1111/all.14421
  • Hackett T.L. et al. Intrinsic phenotypic differences of asthmatic epithelium and its inflammatory responses to respiratory syncytial virus and air pollution. Am. J. Respir. Cell Mol. Biol. 2011;45(5). https://doi.org/10.1165/rcmb.2011-00310C
  • Carlier F.M., C. de Fays, Pilette C. Epithelial Barrier Dysfunction in Chronic Respiratory Diseases. Frontiers in Physiology. 2021;12. https://doi.org/10.3389/fphys.2021.691227
  • Kortekaas I. Krohn et al. Nasal epithelial barrier dysfunction increases sensitization and mast cell degranulation in the absence of allergic inflammation. Allergy Eur. J. Allergy Clin. Immunol. 2020;75(5). https://doi.org/10.1111/all.14132
  • Wan H. et al. The transmembrane protein occludin of epithelial tight junctions is a functional target for serine peptidases from faecal pellets of Dermatophagoides pteronyssinus. Clin. Exp. Allergy. 2001;31(2). https://doi.org/10.1046/j.1365-2222.2001.00970.x
  • Petecchia L. et al. Bronchial airway epithelial cell damage following exposure to cigarette smoke includes disassembly of tight junction components mediated by the extracellular signal-regulated kinase 1/2 pathway. Chest. 2009;135(6). https://doi.org/10.1378/chest.08-1780
  • Short K.R. et al. Influenza virus damages the alveolar barrier by disrupting epithelial cell tight junctions. Eur. Respir. J. 2016;47(3). https://doi.org/10.1183/13993003.01282-2015
  • Saatian B. et al. Interleukin-4 and interleukin-13 cause barrier dysfunction in human airway epithelial cells. Tissue Barriers. 2013;1(2). https://doi.org/10.4161/tisb.24333
  • Buckle F.G., Cohen A.B. Nasal mucosal hyperpermeability to macromolecules in atopic rhinitis and extrinsic asthma. J. Allergy Clin. Immunol. 1975;55(4). https://doi.org/10.1016/0091 -6749(75)90139-6
  • Ilowite J.S., Bennett W.D., Sheetz M.S., Groth M.L., Nierman D.M. Permeability of the bronchial mucosa to 99mTc-DTPA in asthma. Am. Rev. Respir. Dis. 1989;139(5). https://doi.org/10.1164/ajrccm/139.5.1139
  • Lemarchand P., Chinet T., Collignon M.A., Urzua G., Barritault L., Huchon G.J. Bronchial clearance of DTPA is increased in acute asthma but not in chronic asthma. Am. Rev. Respir. Dis. 1992;145(1). https://doi.org/10.1164/ajrccm/145.1.147
  • Donno Del M., Chetta A., Foresi A., Gavaruzzi G., Ugolotti G., Olivieri D. Lung epithelial permeability and bronchial responsiveness in subjects with stable asthma. Chest. 1997;111(5). https://doi.org/10.1378/chest.111.5.1255
  • Taylor S.M., Downes H., Hirshman C.A., Peters J.E., Leon D. Pulmonary uptake of mannitol as an index of changes in lung epithelial permeability. J. Appl. Physiol. Respir. Environ. Exerc. Physiol. 1983;55(2). https://doi.org/10.1152/jappl.1983.55.2.614
  • Georas S. et al. The leaky lung test: a pilot study using inhaled mannitol to measure airway barrier function in asthma. J. Asthma. 2019;56(12). https://doi.org/10.1080/02770903.2018.1536145
  • Almuntashiri S., Zhu Y., Han Y., Wang X., Somanath P.R., Zhang D. Club cell secreted protein CC16: Potential applications in prognosis and therapy for pulmonary diseases. Journal of Clinical Medicine. 2020;9(12). https://doi.org/10.3390/jcm9124039
  • Sturgeon C., Fasano A. Zonulin, a regulator of epithelial and endothelial barrier functions, and its involvement in chronic inflammatory diseases. Tissue Barriers. 2016;4(4). https://doi.org/10.1080/21688370.2016.1251384
  • Vieira Braga F.A. et al. A cellular census of human lungs identifies novel cell states in health and in asthma. Nat. Med. 2019;25(7). https://doi.org/10.1038/s41591-019-0468-5
  • Plasschaert L.W. et al. A single-cell atlas of the airway epithelium reveals the CFTR-rich pulmonary ionocyte. Nature. 2018;560(7718). https://doi.org/10.1038/s41586-018-0394-6
  • Steelant B., Seys S.F., Boeckxstaens G., Akdis C.A., Ceuppens J.L., Hellings P.W. Restoring airway epithelial barrier dysfunction: a new therapeutic challenge in allergic airway disease. Rhinol. J. 2017;54(3). https://doi.org/10.4193/rhin15.376
  • Wawrzyniak P. et al. Regulation of bronchial epithelial barrier integrity by type 2 cytokines and histone deacetylases in asthmatic patients. J. Allergy Clin. Immunol. 2017;139(1). https://doi.org/10.1016/j.jaci.2016.03.050
  • Fukuda K. et al. Epithelial-to-mesenchymal transition is a mechanism of ALK inhibitor resistance in lung cancer independent of ALK mutation status. Cancer Res. 2019;79(7). https://doi.org/10.1158/0008-5472.CAN-18-2052
Еще
Статья научная