Дискуссионные аспекты суицидологии: связь нейровоспаления с суицидальным поведением у психически здоровых людей. Сообщение I

Автор: Козлов Вадим Авенирович, Голенков Андрей Васильевич, Зотов Павел Борисович, Булыгина Ирина Евгеньевна

Журнал: Суицидология @suicidology

Статья в выпуске: 1 (54) т.15, 2024 года.

Бесплатный доступ

Накоплен большой массив литературы, в которой доказывается, что суицидальное поведение (завершённые суициды) индуцировано воспалением периферической и центральной нервной системы, реализую щимся вследствие врождённых генных полиморфизмов и/или изменения эпигеномных меток. Цель работы - систематизация сведений о роли цитокинов и воспалительных хемокинов в процессах трансляции геномных дефектов в суицидальное поведение у психически здоровых людей. В работе рассмотрена патофизиология нейровоспаления, приведены молекулярные и цитологические сведения, формирующие естественнонаучное представление о различиях нейровоспаления с участием микроглии, цито- и хемокинов и классического воспаления с активацией периферических макрофагов, Т-клеток, продуктов эйкозотетраеновой кислоты. Обсуждается роль кинуренинового пути и NMDA-рецепторов в формировании нейровоспаления и суицидального поведения. Показано как периферическое воспаление может индуцировать нейровоспаление. Патофизиология формирования суицидального поведения рассмотрена на примерах связи нейровоспаления с его проявлениями (суицидальными мыслями, суицидальными попытками и завершенными суицидами) у лиц без психических нарушений.

Еще

Нейровоспаление, микроглия, цитокины, хемокины, суицидальное поведение (завершённый суицид), однонуклеотидные полиморфизмы, кинуренин, триптофан, nmda

Короткий адрес: https://sciup.org/140304505

IDR: 140304505   |   DOI: 10.32878/suiciderus.24-15-01(54)-3-30

Список литературы Дискуссионные аспекты суицидологии: связь нейровоспаления с суицидальным поведением у психически здоровых людей. Сообщение I

  • Doran C.M., Kinchin I. Economic and epidemiological impact of youth suicide in countries with the highest hu-man development index. PLoS One. 2020; 15 (5): e0232940. DOI: 10.1371/journal.pone.0232940
  • American Psychiatric Association. Diagnostic and statisti-cal manual of mental disorders. 5. Arlington: American Psychiatric Publishing; 2013. 947 p.
  • Donegan J.J., Nemeroff C.B. Suicide and Inflammation. Adv Exp Med Biol. 2023; 1411: 379-404. DOI: 10.1007/978-981-19-7376-5_17
  • Mikhalitskaya E.V., Vyalova N.M., Ermakov E.A., Levchuk L.A., Simutkin G.G., Bokhan N.A., Ivanova S.A. Association of single nucleotide polymorphisms of cyto-kine genes with depression, schizophrenia and bipolar dis-order. Genes (Basel). 2023; 14 (7): 1460. DOI: 10.3390/genes14071460
  • Shkundin A., Halaris A. Associations of BDNF / BDNF-AS SNPs with Depression, Schizophrenia, and Bipolar Disorder. J Pers Med. 2023; 13 (9): 1395. DOI: 10.3390/jpm13091395
  • Bahado-Singh R.O., Vishweswaraiah S., Aydas B., Mishra N.K., Yilmaz A., Guda C., Radhakrishna U. Artificial in-telligence analysis of newborn leucocyte epigenomic markers for the prediction of autism. Brain Res. 2019; 1724: 146457. DOI: 10.1016/j.brainres.2019.146457
  • Lozupone M., D'Urso F., Piccininni C., Montagna M., Sardone R., Resta E., Dibello V., Daniele A., Giannelli G., Bellomo A., Panza F. The relationship between epigenet-ics and microbiota in neuropsychiatric diseases. Epige-nomics. 2020; 12 (17): 1559-1568. DOI: 10.2217/epi-2020-0053
  • Ivanets N.N., Svistunov A.A., Chubarev V.N., Kinkulkina M.A., Tikhonova Y.G., Syzrantsev N.S., Sologova S.S., Ignatyeva N.V., Mutig K., Tarasov V.V. Can molecular biology propose reliable biomarkers for diagnosing major depression? Curr Pharm Des. 2021; 27 (2): 305-318. DOI: 10.2174/1381612826666201124110437
  • Schnieder T.P., Trencevska I., Rosoklija G., Stankov A., Mann J.J., Smiley J., Dwork A.J. Microglia of prefrontal white matter in suicide. J Neuropathol Exp Neurol. 2014; 73 (9): 880-890. DOI: 10.1097/NEN.0000000000000107
  • Enache D., Pariante C.M., Mondelli V. Markers of central inflammation in major depressive disorder: A systematic review and meta-analysis of studies examining cerebro-spinal fluid, positron emission tomography and post-mortem brain tissue. Brain Behav Immun. 2019; 81: 24-40. DOI: 10.1016/j.bbi.2019.06.015
  • Lai J., Jiang J., Zhang P., Xi C., Wu L., Gao X., Fu Y., Zhang D., Chen Y., Huang H., Zhu Y., Hu S. Impaired blood-brain barrier in the microbiota-gut-brain axis: Po-tential role of bipolar susceptibility gene TRANK1. J Cell Mol Med. 2021; 25 (14): 6463-6469. DOI: 10.1111/jcmm.16611
  • Hayley S., Hakim A.M., Albert PюR. Depression, demen-tia and immune dysregulation. Brain. 2021; 144 (3): 746-760. DOI: 10.1093/brain/awaa405
  • Konsman J.P., Parnet P., Dantzer R. Cytokine-induced sickness behaviour: mechanisms and implications. Trends Neurosci. 2002; 25 (3): 154-159. DOI: 10.1016/s0166-2236(00)02088-9
  • Ng Y.P., Yip T.F., Peiris J.S.M., Ip N.Y., Lee S.M.Y. Avian influenza A H7N9 virus infects human astrocytes and neuronal cells and induces inflammatory immune re-sponses. J Neurovirol. 2018; 24 (6): 752-760. DOI: 10.1007/s13365-018-0659-8
  • Kotsiri I., Resta P., Spyrantis A., Panotopoulos C., Chani-otis D., Beloukas A., Magiorkinis E. Viral Infections and Schizophrenia: A Comprehensive Review. Viruses. 2023; 15 (6): 1345. DOI: 10.3390/v15061345
  • Hammer C., Stepniak B., Schneider A., Papiol S., Tantra M., Begemann M., Sirén A.L., Pardo L.A., Sperling S., Mohd J.S., Gurvich A., Jensen N., Ostmeier K., Lühder F., Probst C., Martens H., Gillis M., Saher G., Assogna F., Spalletta G., Stöcker W., Schulz T.F., Nave K.A., Ehren-reich H. Neuropsychiatric disease relevance of circulating anti-NMDA receptor autoantibodies depends on blood-brain barrier integrity. Mol Psychiatry. 2014; 19 (10): 1143-1149. DOI: 10.1038/mp.2013.110
  • Laing C., Blanchard N., McConkey G.A. Noradrenergic Signaling and Neuroinflammation Crosstalk Regulate Toxoplasma gondii-Induced Behavioral Changes. Trends Immunol. 2020; 41 (12): 1072-1082. DOI: 10.1016/j.it.2020.10.001
  • Lozupone M., D'Urso F., Piccininni C., Montagna M., Sardone R., Resta E., Dibello V., Daniele A., Giannelli G., Bellomo A., Panza F. The relationship between epigenet-ics and microbiota in neuropsychiatric diseases. Epige-nomics. 2020; 12 (17): 1559-1568. DOI: 10.2217/epi-2020-0053
  • Evins A.E., Korhonen T., Kinnunen T.H., Kaprio J. Pro-spective association between tobacco smoking and death by suicide: a competing risks hazard analysis in a large twin cohort with 35-year follow-up. Psychol Med. 2017; 47 (12): 2143-2154. DOI: 10.1017/S0033291717000587
  • Kumar A., Sinha N., Kodidela S., Zhou L., Singh U.P., Kumar S. Effect of benzo(a)pyrene on oxidative stress and inflammatory mediators in astrocytes and HIV-infected macrophages. PLoS One. 2022; 17 (10): e0275874. DOI: 10.1371/journal.pone.0275874
  • Козлов В.А., Голенков А.В., Сапожников С.П. Абсент и туйон (невыпиваемый чернобыль). Наркология. 2013; 12 (144): 55-60. [Kozlov VA, Golenkov AV, Sapozhnikov SP. Absinthe and thujone (undrinkable cher-noby). Narcologia. 2013; 12 (144): 55-60] (In Russ)
  • De Berardis D., Vellante F., Pettorruso M., Lucidi L., Tambelli A., Di Muzio I., Gianfelice G., Ventriglio A., Fornaro M., Serafini G., Pompili M., Perna G., Fraticelli S., Martinotti G., di Giannantonio M. Suicide and genetic biomarkers: toward personalized tailored-treatment with lithium and Clozapine. Curr Pharm Des. 2021; 27 (30): 3293-3304. DOI: 10.2174/1381612827666210603143353
  • Wei Y.X., Liu B.P., Qiu H.M., Zhang J.Y., Wang X.T., Jia C.X. Effects of vitamin D-related gene polymorphisms on attempted suicide. Psychiatr Genet. 2021; 31 (6): 230-238. DOI: 10.1097/YPG.0000000000000295
  • Pistis G., Vázquez-Bourgon J., Fournier M., Jenni R., Cleusix M., Papiol S., Smart S.E., Pardiñas A.F., Walters J.T.R., MacCabe J.H., Kutalik Z., Conus P., Crespo-Facorro B., Q Do K. Gene set enrichment analysis of pathophysiological pathways highlights oxidative stress in psychosis. Mol Psychiatry. 2022; 27 (12): 5135-5143. DOI: 10.1038/s41380-022-01779-1
  • Kristof Z., Gal Z., Torok D., Eszlari N., Sutori S., Erdelyi-Hamza B., Petschner P., Sperlagh B., Anderson I.M., Deakin J.F.W., Bagdy G., Juhasz G., Gonda X. Variation along P2RX7 interacts with early traumas on severity of anxiety suggesting a role for neuroinflammation. Sci Rep. 2023; 13 (1): 7757. DOI: 10.1038/s41598-023-34781-w
  • Mckee A.C., Daneshvar D.H. The neuropathology of traumatic brain injury. Handb Clin Neurol. 2015; 127: 45-66. DOI: 10.1016/B978-0-444-52892-6.00004-0
  • Brisch R., Wojtylak S., Saniotis A., Steiner J., Gos T., Kumaratilake J., Henneberg M., Wolf R. The role of mi-croglia in neuropsychiatric disorders and suicide. Eur Arch Psychiatry Clin Neurosci. 2022; 272 (6): 929-945. DOI: 10.1007/s00406-021-01334-z
  • Whiteley P., Marlow B., Kapoor R.R., Blagojevic-Stokic N., Sala R. Autoimmune encephalitis and autism spectrum disorder. Front Psychiatry. 2021; 12: 775017. DOI: 10.3389/fpsyt.2021.775017
  • Neupane S.P., Daray F.M., Ballard E.D., Galfalvy H., Itzhaky L., Segev A., Shelef A., Tene O., Rizk M.M., Mann J.J., Zalsman G. Immune-related biomarkers and su-icidal behaviors: A meta-analysis. Eur Neuropsychophar-macol. 2023; 75: 15-30. DOI: 10.1016/j.euroneuro.2023.05.009
  • Serafini G., Pompili M., Elena Seretti M., Stefani H., Palermo M., Coryell W., Girardi P. The role of inflamma-tory cytokines in suicidal behavior: a systematic review. Eur Neuropsychopharmacol. 2013; 23 (12): 1672-1686. DOI: 10.1016/j.euroneuro.2013.06.002
  • Erta M., Quintana A., Hidalgo J. Interleukin-6, a major cytokine in the central nervous system. Int J Biol Sci. 2012; 8 (9): 1254-1266. DOI: 10.7150/ijbs.4679
  • Mayhan W.G. VEGF increases permeability of the blood-brain barrier via a nitric oxide synthase/cGMP-dependent pathway. Am J Physiol. 1999; 276 (5): C1148-1153. DOI: 10.1152/ajpcell.1999.276.5.C1148
  • Isung J., Mobarrez F., Nordström P., Asberg M., Jokinen J. Low plasma vascular endothelial growth factor (VEGF) associated with completed suicide. World J Biol Psychia-try. 2012; 13 (6): 468-473. DOI: 10.3109/15622975.2011.624549
  • Probert L. TNF- and its receptors in the CNS: The essen-tial, the desirable and the deleterious effects. Neurosci-ence. 2015; 302: 2-22. DOI: 10.1016/j.neuroscience.2015.06.038
  • Müller N. Inflammation in Schizophrenia: Pathogenetic Aspects and Therapeutic Considerations. Schizophr Bull. 2018; 44 (5): 973-982. DOI: 10.1093/schbul/sby024
  • Baker D.L. / Edit. in Abbas, Abul K., Lichtman, Andrew H., Pillai, Shiv, Cellular and molecular immunology. 2022. Philadelphia: Saunders Elsevier. 560 p.
  • Wolf S.A., Boddeke H.W., Kettenmann H. Microglia in physiology and disease. Annu Rev Physiol. 2017; 79: 619-643. DOI: 10.1146/annurev-physiol-022516-034406
  • Wang Q., Lu M., Zhu X., Gu X., Zhang T., Xia C., Yang L., Xu Y., Zhou M. The role of microglia immunometabo-lism in neurodegeneration: Focus on molecular determi-nants and metabolic intermediates of metabolic repro-gramming. Biomed Pharmacother. 2022; 153: 113412. DOI: 10.1016/j.biopha.2022.113412
  • Woodburn S.C., Bollinger J.L., Wohleb E.S. The seman-tics of microglia activation: neuroinflammation, homeo-stasis, and stress. J Neuroinflammation. 2021; 18 (1): 258. DOI: 10.1186/s12974-021-02309-6
  • Filiou M.D., Arefin A.S., Moscato P., Graeber M.B. 'Neu-roinflammation' differs categorically from inflammation: transcriptomes of Alzheimer's disease, Parkinson's disease, schizophrenia and inflammatory diseases compared. Neu-rogenetics. 2014; 15 (3): 201-212. DOI: 10.1007/s10048-014-0409-x
  • Paolicelli R.C., Sierra A., Stevens B., Tremblay M.E., Aguzzi A., Ajami B. et al. Microglia states and nomencla-ture: A field at its crossroads. Neuron. 2022; 110 (21): 3458-3483. DOI: 10.1016/j.neuron.2022.10.020
  • Sukoff Rizzo S.J., Neal S.J., Hughes Z.A., Beyna M., Rosenzweig-Lipson S., Moss S.J., Brandon N.J. Evidence for sustained elevation of IL-6 in the CNS as a key con-tributor of depressive-like phenotypes. Transl Psychiatry. 2012; 2 (12): e199. DOI: 10.1038/tp.2012.120
  • Than U.T.T., Nguyen L.T., Nguyen P.H., Nguyen X.H., Trinh D.P., Hoang D.H., Nguyen P.A.T., Dang V.D. In-flammatory mediators drive neuroinflammation in autism spectrum disorder and cerebral palsy. Sci Rep. 2023; 13 (1): 22587. DOI: 10.1038/s41598-023-49902-8
  • Dang V.D. Inflammatory mediators drive neuroinflamma-tion in autism spectrum disorder and cerebral palsy. Sci Rep. 2023; 13 (1): 22587. DOI: 10.1038/s41598-023-49902-8
  • Galea E., Graeber M.B. Neuroinflammation: The Abused Concept. ASN Neuro. 2023; 15: 17590914231197523. DOI: 10.1177/17590914231197523
  • The free dictionary by Farlex. Gliopathy https://medical-dictionary.thefreedictionary.com/gliopathy
  • Perrini J. What is Gliopathy? https://studybuff.com/what-is-gliopathy/
  • Rossetti A.C., Paladini M.S., Brüning C.A., Spero V., Cattaneo M.G., Racagni G., Papp M., Riva M.A., Molteni R. Involvement of the IL-6 Signaling Pathway in the Anti-Anhedonic Effect of the Antidepressant Agomelatine in the Chronic Mild Stress Model of Depression. Int J Mol Sci. 2022; 23 (20): 12453. DOI: 10.3390/ijms232012453
  • Nguyen P.T., Dorman L.C., Pan S., Vainchtein I.D., Han R.T., Nakao-Inoue H., Taloma S.E., Barron J.J., Molofsky A.B., Kheirbek M.A., Molofsky A.V. Microglial remodel-ing of the extracellular matrix promotes synapse plasticity. Cell. 2020; 182 (2): 388-403.e15. DOI: 10.1016/j.cell.2020.05.050
  • Woodburn S.C., Bollinger J.L., Wohleb E.S. The seman-tics of microglia activation: neuroinflammation, homeo-stasis, and stress. J Neuroinflammation. 2021; 18 (1): 258. DOI: 10.1186/s12974-021-02309-6
  • Mirabella F., Desiato G., Mancinelli S., Fossati G., Rasile M., Morini R., Markicevic M., Grimm C., Amegandjin C., Termanini A., Peano C., Kunderfranco P., di Cristo G., Zerbi V., Menna E., Lodato S., Matteoli M., Pozzi D. Pre-natal interleukin 6 elevation increases glutamatergic syn-apse density and disrupts hippocampal connectivity in off-spring. Immunity. 2021; 54 (11): 2611-2631. e8. DOI: 10.1016/j.immuni.2021.10.006
  • Iadecola C., Nedergaard M. Glial regulation of the cere-bral microvasculature. Nat Neurosci. 2007; 10 (11): 1369-1376. DOI: 10.1038/nn2003
  • Scarabino D., Peconi M., Broggio E., Gambina G., Maggi E., Armeli F., Mantuano E., Morello M., Corbo R.M., Businaro R. Relationship between proinflammatory cyto-kines (Il-1beta, Il-18) and leukocyte telomere length in mild cognitive impairment and Alzheimer's disease. Exp Gerontol. 2020; 136: 110945. DOI: 10.1016/j.exger.2020.110945.
  • Rendina A., Drongitis D., Donizetti A., Fucci L, Milan G., Tripodi F., Giustezza F., Postiglione A., Pappatà S., Ferra-ri R., Bossù P., Angiolillo A., di Costanzo A., Caiazzo M., Vitale E. CD33 and SIGLECL1 Immunoglobulin Super-family Involved in Dementia. J Neuropathol Exp Neurol. 2020; 79 (8): 891-901. DOI: 10.1093/jnen/nlaa055
  • Šerý O., Zeman T., Sheardová K., Vyhnálek M., Marková H., Laczó J., Lochman J., Kralik P., Vrzalová K., Dziedzinska R., Balcar V.J., Hort J. Six genetically linked mutations in the CD36 gene significantly delay the onset of Alzheimer's disease. Sci Rep. 2022; 12 (1): 10994. DOI: 10.1038/s41598-022-15299-z
  • Müller N. Inflammation in Schizophrenia: Pathogenetic Aspects and Therapeutic Considerations. Schizophr Bull. 2018; 44 (5): 973-982. DOI: 10.1093/schbul/sby024
  • Benedetti F., Aggio V., Pratesi M.L., Greco G., Furlan R. Neuroinflammation in Bipolar Depression. Front Psychia-try. 2020; 11: 71. DOI: 10.3389/fpsyt.2020.00071
  • Wu W., Shao J., Lu H., Xu J., Zhu A., Fang W., Hui G. Guard of delinquency? A role of microglia in inflammato-ry neurodegenerative diseases of the CNS. Cell Biochem Biophys. 2014; 70 (1): 1-8. DOI: 10.1007/s12013-014-9872-0
  • Ji R.R., Xu Z.Z., Gao Y.J. Emerging targets in neuroin-flammation-driven chronic pain. Nat Rev Drug Discov. 2014; 13 (7): 533-548. DOI: 10.1038/nrd4334
  • Denes A., Thornton P., Rothwell N.J., Allan S.M. In-flammation and brain injury: acute cerebral ischaemia, pe-ripheral and central inflammation. Brain Behav Immun. 2010; 24 (5): 708-723. DOI: 10.1016/j.bbi.2009.09.010
  • Ginhoux F., Prinz M. Origin of microglia: current con-cepts and past controversies. Cold Spring Harb Perspect Biol. 2015; 7 (8): a020537. DOI: 10.1101/cshperspect.a020537
  • Mosser C.A., Baptista S., Arnoux I., Audinat E. Microglia in CNS development: Shaping the brain for the future. Prog Neurobiol. 2017; 149-150: 1-20. DOI: 10.1016/j.pneurobio.2017.01.002
  • Saitgareeva A.R., Bulygin K.V., Gareev I.F., Beylerli O.A., Akhmadeeva L.R. The role of microglia in the de-velopment of neurodegeneration. Neurol Sci. 2020; 41 (12): 3609-3615. DOI: 10.1007/s10072-020-04468-5
  • Bialas A.R., Stevens B. TGF-β signaling regulates neu-ronal C1q expression and developmental synaptic refine-ment. Nat Neurosci. 2013; 16 (12): 1773-1782. DOI: 10.1038/nn.3560. Retraction in: Nat Neurosci. 2022; 25 (2): 265.
  • Schafer D.P., Lehrman E.K., Kautzman A.G., Koyama R., Mardinly A.R., Yamasaki R., Ransohoff R.M., Greenberg M.E., Barres B.A., Stevens B. Microglia sculpt postnatal neural circuits in an activity and complement-dependent manner. Neuron. 2012; 74 (4): 691-705. DOI: 10.1016/j.neuron.2012.03.026
  • Swinnen N., Smolders S., Avila A., Notelaers K., Paesen R., Ameloot M., Brône B., Legendre P., Rigo J.M. Com-plex invasion pattern of the cerebral cortex bymicroglial cells during development of the mouse embryo. Glia. 2013; 61 (2): 150-163. DOI: 10.1002/glia.22421
  • Tang Y., Le W. Differential Roles of M1 and M2 Micro-glia in Neurodegenerative Diseases. Mol Neurobiol. 2016; 53 (2): 1181-1194. DOI: 10.1007/s12035-014-9070-5
  • Yuan Y., Wu C., Ling E.A. Heterogeneity of Microglia Phenotypes: Developmental, Functional and Some Thera-peutic Considerations. Curr Pharm Des. 2019; 25 (21): 2375-2393. DOI: 10.2174/1381612825666190722114248
  • Zhong Y., Gu L., Ye Y., Zhu H., Pu B., Wang J., Li Y., Qiu S., Xiong X., Jian Z. JAK2/STAT3 Axis Intermedi-ates Microglia / Macrophage Polarization During Cerebral Ischemia/Reperfusion Injury. Neuroscience. 2022; 496: 119-128. DOI: 10.1016/j.neuroscience.2022.05.016
  • Hu X., Li P., Guo Y., Wang H., Leak R.K., Chen S., Gao Y., Chen J. Microglia/macrophage polarization dynamics reveal novel mechanism of injury expansion after focal cerebral ischemia. Stroke. 2012; 43 (11): 3063-3070. DOI: 10.1161/STROKEAHA.112.659656
  • Saitgareeva A.R., Bulygin K.V., Gareev I.F., Beylerli O.A., Akhmadeeva L.R. The role of microglia in the de-velopment of neurodegeneration. Neurol Sci. 2020; 41 (12): 3609-3615. DOI: 10.1007/s10072-020-04468-5
  • Lenz K.M., McCarthy M.M. A starring role for microglia in brain sex differences. Neuroscientist. 2015; 21 (3): 306-321. DOI: 10.1177/1073858414536468
  • Orihuela R., McPherson C.A., Harry G.J. Microglial M1/M2 polarization and metabolic states. Br J Pharmacol. 2016; 173 (4): 649-665. DOI: 10.1111/bph.13139
  • Howes O.D., McCutcheon R. Inflammation and the neural diathesis-stress hypothesis of schizophrenia: a reconceptu-alization. Transl Psychiatry. 2017; 7 (2): e1024. DOI: 10.1038/tp.2016.278
  • Tam W.Y., Ma C.H. Bipolar/rod-shaped microglia are proliferating microglia with distinct M1/M2 phenotypes. Sci Rep. 2014; 4: 7279. DOI: 10.1038/srep07279
  • Pandey G.N., Rizavi H.S., Ren X., Fareed J., Hoppen-steadt D.A., Roberts R.C., Conley R.R., Dwivedi Y. Proin-flammatory cytokines in the prefrontal cortex of teenage suicide victims. J Psychiatr Res. 2012; 46 (1): 57-63. DOI: 10.1016/j.jpsychires.2011.08.006
  • Courtet P., Giner L., Seneque M., Guillaume S., Olie E., Ducasse D. Neuroinflammation in suicide: Toward a com-prehensive model. World J Biol Psychiatry. 2016; 17 (8): 564-586. DOI: 10.3109/15622975.2015.1054879
  • Hsu P.C., Groer M., Beckie T. New findings: depression, suicide, and Toxoplasma gondii infection. J Am Assoc Nurse Pract. 2014; 26 (11): 629-637. DOI: 10.1002/2327-6924.12129
  • Serafini G., Pompili M., Elena Seretti M., Stefani H., Palermo M., Coryell W., Girardi P. The role of inflamma-tory cytokines in suicidal behavior: a systematic review. Eur Neuropsychopharmacol. 2013; 23 (12): 1672-1686. DOI: 10.1016/j.euroneuro.2013.06.002
  • Tonelli L.H. Neuroinflammation in suicide: too little may be just as bad as too much. Acta Psychiatr Scand. 2015; 131 (4): 242-243. DOI: 10.1111/acps.12340
  • Steiner J., Bielau H., Brisch R., Danos P., Ullrich O., Mawrin C., Bernstein H.G., Bogerts B. Immunological as-pects in the neurobiology of suicide: elevated microglial density in schizophrenia and depression is associated with suicide. J Psychiatr Res. 2008; 42 (2): 151-157. DOI: 10.1016/j.jpsychires.2006.10.013
  • Sha Q., Fu Z., Escobar Galvis M.L., Madaj Z., Underwood M.D., Steiner J.A., Dwork A., Simpson N., Galfalvy H., Rozoklija G., Achtyes E.D., Mann J.J., Brundin L. Inte-grative transcriptome- and DNA methylation analysis of brain tissue from the temporal pole in suicide decedents and their controls. Digital. Mol Psychiatry. 2023. DOI: 10.1038/s41380-023-02311-9
  • Xie M., Bu Y. SKA2/FAM33A: A novel gene implicated in cell cycle, tumorigenesis, and psychiatric disorders. Genes Dis. 2018; 6 (1): 25-30. DOI: 10.1016/j.gendis.2018.11.001 58
  • Sadeh N., Spielberg J.M., Logue M.W., et al. SKA2 meth-ylation is associated with decreased prefrontal cortical thickness and greater PTSD severity among trauma-exposed veterans. Mol. Psychiatry. 2016; 21 (3): 357-363. DOI: 10.1038/mp.2015.134
  • Козлов В.А., Зотов П.Б., Голенков А.В. Суицид: генетика и патоморфоз. Монография. Тюмень: Вектор Бук, 2023. 200 с. [Kozlov VA, Zotov PB, Golenkov AV. Suicide: genetics and pathomorphosis. Monography. Tyumen: Vector Book, 2023. 200 с.] (In Russ)
  • Kaminsky Z., Wilcox H.C., Eaton W.W., Van Eck K., Kilaru V., Jovanovic T., Klengel T., Bradley B., Binder E.B., Ressler K.J., Smith A.K. Epigenetic and genetic var-iation at SKA2 predict suicidal behavior and post-traumatic stress disorder. Transl Psychiatry. 2015; 5 (8): e627. DOI: 10.1038/tp.2015.105
  • Clive M.L., Boks M.P., Vinkers C.H., Osborne L.M., Payne J.L., Ressler K.J., Smith A.K., Wilcox H.C., Ka-minsky Z. Discovery and replication of a peripheral tissue DNA methylation biosignature to augment a suicide pre-diction model. Clin Epigenetics. 2016; 8: 113. DOI: 10.1186/s13148-016-0279-1
  • Boks M.P., Rutten B.P., Geuze E., Houtepen L.C., Ver-metten E., Kaminsky Z., Vinkers C.H. SKA2 methylation is involved in cortisol stress reactivity and predicts the de-velopment of Post-Traumatic Stress Disorder (PTSD) after military deployment. Neuropsychopharmacology. 2016; 41 (5): 1350-1356. DOI: 10.1038/npp.2015.286
  • Bagheri M., Ghaneialvar H., Oshnokhah M., Salari S. GFAP and Neuron Specific Enolase (NSE) in the Serum of Suicide Attempters. Med J Islam Repub Iran. 2022; 36: 103. DOI: 10.47176/mjiri.36.103
  • Xu S.X., Xie X.H., Yao L., Wang W., Zhang H., Chen M.M., Sun S., Nie Z.W., Nagy C., Liu Z. Human in vivo evidence of reduced astrocyte activation and neuroin-flammation in patients with treatment-resistant depression following electroconvulsive therapy. Psychiatry Clin Neu-rosci. 2023; 77 (12): 653-664. DOI: 10.1111/pcn.13596
  • Schwieler L., Samuelsson M., Frye M.A., Bhat M., Schuppe-Koistinen I., Jungholm O., Johansson A.G., Lan-dén M., Sellgren C.M., Erhardt S. Electroconvulsive ther-apy suppresses the neurotoxic branch of the kynurenine pathway in treatment-resistant depressed patients. J Neu-roinflammation. 2016; 13 (1): 51. DOI: 10.1186/s12974-016-0517-7
  • Lehrer S., Rheinstein P.H. Nonsteroidal anti-inflammatory drugs (NSAIDs) reduce suicidal ideation and depression. Discov Med. 2019; 28 (154): 205-212.
  • Pandey G.N., Rizavi H.S., Bhaumik R., Zhang H. Chemo-kines gene expression in the prefrontal cortex of depressed suicide victims and normal control subjects. Brain Behav Immun. 2021; 94: 266-273. DOI: 10.1016/j.bbi.2021.01.033
  • Shinko Y., Otsuka I., Okazaki S., Horai T., Boku S., Takahashi M., Ueno Y., Sora I., Hishimoto A. Chemokine alterations in the postmortem brains of suicide completers. J Psychiatr Res. 2020; 120: 29-33. DOI: 10.1016/j.jpsychires.2019.10.008
  • Postolache T.T., Lapidus M., Sander E.R., Langenberg P., Hamilton R.G., Soriano J.J., McDonald J.S., Furst N., Bai J., Scrandis D.A., Cabassa J.A., Stiller J.W., Balis T., Guzman A., Togias A., Tonelli L.H. Changes in allergy symptoms and depression scores are positively correlated in patients with recurrent mood disorders exposed to seasonal peaks in aeroallergens. Scientific World Journal. 2007; 7: 1968-1977. DOI: 10.1100/tsw.2007.286
  • Qin P., Mortensen P.B., Waltoft B.L., Postolache T.T. Allergy is associated with suicide completion with a pos-sible mediating role of mood disorder – a population-based study. Allergy. 2011; 66 (5): 658-664. DOI: 10.1111/j.1398-9995.2010.02523.x
  • Postolache T.T., Komarow H., Tonelli L.H. Allergy: a risk factor for suicide? Curr Treat Options Neurol. 2008; 10 (5): 363-376. DOI: 10.1007/s11940-008-0039-4
  • Tonelli L.H., Hoshino A., Katz M., Postolache T.T. Acute stress promotes aggressive-like behavior in rats made al-lergic to tree pollen. Int J Child Health Hum Dev. 2008; 1 (3): 305-312.
  • Tonelli L.H., Stiller J., Rujescu D., Giegling I., Schneider B., Maurer K., Schnabel A., Möller H.J., Chen H.H., Postolache T.T. Elevated cytokine expression in the or-bitofrontal cortex of victims of suicide. Acta Psychiatr Scand. 2008; 117 (3): 198-206. DOI: 10.1111/j.1600-0447.2007.01128.x
  • Sublette M.E., Galfalvy H.C., Fuchs D., Lapidus M., Grunebaum M.F., Oquendo M.A., Mann J.J., Postolache T.T. Plasma kynurenine levels are elevated in suicide at-tempters with major depressive disorder. Brain Behav Immun. 2011; 25 (6): 1272-1278. DOI: 10.1016/j.bbi.2011.05.002
  • Bradley K.A., Case J.A., Khan O., Ricart T., Hanna A., Alonso C.M., Gabbay V. The role of the kynurenine pathway in suicidality in adolescent major depressive disorder. Psychiatry Res. 2015; 227 (2-3): 206-212. DOI: 10.1016/j.psychres.2015.03.031
  • Bryleva E.Y., Brundin L. Suicidality and activation of the kynurenine pathway of tryptophan metabolism. Curr Top Behav Neurosci. 2017; 31: 269-284. DOI: 10.1007/7854_2016_5
  • Achtyes E., Keaton S.A., Smart L., Burmeister A.R., Heilman P.L., Krzyzanowski S., Nagalla M., Guillemin G.J., Escobar Galvis M.L., Lim C.K., Muzik M., Posto-lache T.T., Leach R., Brundin L. Inflammation and kynurenine pathway dysregulation in post-partum wom-en with severe and suicidal depression. Brain Behav Immun. 2020; 83: 239-247. DOI: 10.1016/j.bbi.2019.10.017
  • Zhang L., Sander J.W., Zhang L., Jiang X.Y., Wang W., Shuang K., Abdulaziz A.T.A., Wu M.Q., Chi X.S., Li J.M., Zhou D. Suicidality is a common and serious fea-ture of anti-N-methyl-D-aspartate receptor encephalitis. J Neurol. 2017; 264 (12): 2378-2386. DOI: 10.1007/s00415-017-8626-5
  • Erhardt S., Lim C.K., Linderholm K.R., Janelidze S., Lindqvist D., Samuelsson M., Lundberg K., Postolache T.T., Träskman-Bendz L., Guillemin G.J., Brundin L. Connecting inflammation with glutamate agonism in su-icidality. Neuropsychopharmacology. 2013; 38 (5): 743-752. DOI: 10.1038/npp.2012.248
  • Bryleva E.Y., Brundin L. Kynurenine pathway metabo-lites and suicidality. Neuropharmacology. 2017; 112 (Pt B): 324-330. DOI: 10.1016/j.neuropharm.2016.01.034
  • Abudara V., Roux L., Dallérac G., Matias I., Dulong J., Mothet J.P., Rouach N., Giaume C. Activated microglia impairs neuroglial interaction by opening Cx43 hemi-channels in hippocampal astrocytes. Glia. 2015; 63 (5): 795-811. DOI: 10.1002/glia.22785
  • Wu S., Ding Y., Wu F., Xie G., Hou J., Mao P. Serum lipid levels and suicidality: a meta-analysis of 65 epide-miological studies. J Psychiatry Neurosci. 2016; 41 (1): 56-69. DOI: 10.1503/jpn.150079
  • Messaoud A., Mensi R., Mrad A., Mhalla A., Azizi I., Amemou B., Trabelsi I., Grissa M.H., Salem N.H., Chadly A., Douki W., Najjar M.F., Gaha L. Is low total cholesterol levels associated with suicide attempt in de-pressive patients? Ann Gen Psychiatry. 2017; 16: 20. DOI: 10.1186/s12991-017-0144-4
  • Aguglia A., Solano P., Giacomini G., Caprino M., Co-nigliaro C., Romano M., Aguglia E., Serafini G., Amore M. The Association Between Dyslipidemia and Lethali-ty of Suicide Attempts: A Case-Control Study. Front Psychiatry. 2019; 10: 70. DOI: 10.3389/fpsyt.2019.00070
  • Li H., Zhang X., Sun Q., Zou R., Li Z., Liu S. Associa-tion between serum lipid concentrations and attempted suicide in patients with major depressive disorder: A meta-analysis. PLoS One. 2020; 15 (12): e0243847. DOI: 10.1371/journal.pone.0243847
  • Daray F.M., Mann J.J., Sublette M.E. How lipids may affect risk for suicidal behavior. J Psychiatr Res. 2018; 104: 16-23. DOI: 10.1016/j.jpsychires.2018.06.007
  • Troisi A. Cholesterol in coronary heart disease and psychiatric disorders: same or opposite effects on mor-bidity risk? Neurosci Biobehav Rev. 2009; 33 (2): 125-132. DOI: 10.1016/j.neubiorev.2008.09.003
  • Bartoli F., Di Brita C., Crocamo C., Clerici M., Carrà G. Lipid profile and suicide attempt in bipolar disorder: A meta-analysis of published and unpublished data. Prog Neuropsychopharmacol Biol Psychiatry. 2017; 79 (Pt B): 90-95. DOI: 10.1016/j.pnpbp.2017.06.008
  • Park S., Yi KK, Na R, Lim A, Hong JP. No association between serum cholesterol and death by suicide in pa-tients with schizophrenia, bipolar affective disorder, or major depressive disorder. Behav Brain Funct. 2013; 9: 45. DOI: 10.1186/1744-9081-9-45
  • Mann J.J., Arango V.A., Avenevoli S., Brent D.A., Champagne F.A., Clayton P., Currier D., Dougherty D.M., Haghighi F., Hodge S.E., Kleinman J., Lehner T., McMahon F., Mościcki E.K., Oquendo M.A., Pandey G.N., Pearson J., Stanley B., Terwilliger J., Wenzel A. Candidate endophenotypes for genetic studies of suicidal behavior. Biol Psychiatry. 2009; 65 (7): 556-563. DOI: 10.1016/j.biopsych.2008.11.021
  • Chistiakov D.A., Kekelidze Z.I., Chekhonin V.P. Endo-phenotypes as a measure of suicidality. J Appl Genet. 2012; 53 (4): 389-413. DOI: 10.1007/s13353-012-0113-1
Еще
Статья научная