Дискуссионные аспекты суицидологии: связь нейро- воспаления с суицидальным поведением у лиц с психическими расстройствами. Сообщение II

Автор: В.А. Козлов, А.В. Голенков, П.Б. Зотов

Журнал: Суицидология @suicidology

Статья в выпуске: 2 (55) т.15, 2024 года.

Бесплатный доступ

Патофизиология формирования суицидального поведения рассмотрена на примерах связи нейровоспаления с его проявлениями (суицидальными мыслями, суицидальными попытками и завершенными суицидами) у лиц с такими психическими расстройствами, как: депрессивное расстройство (большое, перипартальная депрессия), нейрогенная (нервная) анорексия, шизофрения, а также суицидами (суицидальным поведением), связанными с инфекционными заболеваниями (T. gondii, COVID-19). В результате анализа большого массива литературных данных высказывается частная гипотеза, что психически больные с суицидальным поведением (совершившие суицид), отличаются от психически больных людей, без суицидального поведения, наличием у первых генетических и/или метаболических маркеров хронического вялотекущего нейровоспаления. Признаки нейровоспаления наблюдаются также у перенесших COVID19 пациентов, по крайней мере, в раннем в постковидном периоде (до 100 дней после выздоровления) и у лиц носителей T. gondii. Эти данные сопоставлены с ранее выявленным увеличением числа суицидов в группе лиц, перенесших респираторные инфекции и лиц с аллергией на пыльцу растения. Анализ механизмов запуска нейровоспаления, ассоциируемого с суцидальными поведением (заершенными суицидами) при некоторых психических расстройствах позволяет сделать вывод об отсутствии прямой связи суицидов у психически больных с их основным заболеванием и необходимости рассматривать суцидальное поведение (завершенные суициды) у психически больных как коморбидные состояния. Суициденты без предшествующих клинических нарушений психики и с разными клинически диагностируемыми психическими расстройствами могут быть выделены в отдельную однородную группу – пациентов с суицидальным поведением. Их объединяет суицидальная активность, которая индуцируется описанными выше причинами нейровоспаления, что доказывает биологическую мультифакторную природу суицидальности.

Еще

Нейровоспаление, суицидальное поведение (суицид), большое депрессивное расстройство, перипартальная депрессия, нейрогенная (нервная) анорексия, шизофрения, T. gondii, COVID-19

Короткий адрес: https://sciup.org/140306970

IDR: 140306970   |   DOI: 10.32878/suiciderus.24-15-02(55)-29-56

Список литературы Дискуссионные аспекты суицидологии: связь нейро- воспаления с суицидальным поведением у лиц с психическими расстройствами. Сообщение II

  • Филоненко А.В., Голенков А.В. Влияние послеродовой депрессии на семью. Психическое здоровье. 2011; 9 (6): 71-76. [Filonenko A.V., Golenkov A.V. The impact of postpartum depression on the family. Mental health. 2011. 9 (6): 71-76.] (In Russ)
  • Национальное руководство по суицидологии / Под ред. Б.С. Положего. М.: Изд-во Медицинское информационно агентство, 2019. 600 с. [National Guide to Suicidology / Ed. B.S. Polozhiy. Moscow: Medical Information Agency Publishing House, 2019. 600 p.] (In Russ)
  • Mokrov G.V., Deeva O.A., Gudasheva T.A. The ligands of translocator protein: design and biological properties. Curr Pharm Des. 2021; 27 (2): 217-237. DOI: 10.2174/1381612826666200903122025
  • Setiawan E., Wilson A.A., Mizrahi R., Rusjan P.M., Miler L., Rajkowska G., Suridjan I., Kennedy J.L., Rekkas P.V., Houle S., Meyer J.H. Role of translocator protein density, a marker of neuroinflammation, in the brain during major depressive episodes. JAMA Psychiatry. 2015; 72 (3): 268-275. DOI: 10.1001/jamapsychiatry.2014.2427
  • Zeng D., He S., Ma C., Wen Y., Song W., Xu Q., Zhao N., Wang Q., Yu Y., Shen Y., Huang J., Li H. Network-based approach to identify molecular signatures in the brains of depressed suicides. Psychiatry Res. 2020; 294: 113513. DOI: 10.1016/j.psychres.2020.113513
  • Ambrósio G., Kaufmann F.N., Manosso L., Platt N., Ghisleni G., Rodrigues A.L.S., Rieger D.K., Kaster M.P. Depression and peripheral inflammatory profile of patients with obesity. Psychoneuroendocrinology. 2018; 91: 132-141. DOI: 10.1016/j.psyneuen.2018.03.005
  • D'Mello C., Swain M.G. Immune-to-brain communication pathways in inflammation-associated sickness and depression. Curr Top Behav Neurosci. 2017; 31: 73-94. DOI: 10.1007/7854_2016_37
  • Ting E.Y., Yang A.C., Tsai S.J. Role of Interleukin-6 in Depressive Disorder. Int J Mol Sci. 2020; 21 (6): 2194. DOI: 10.3390/ijms21062194
  • Liu H., Zhang Y., Gao Y., Zhang Z. Elevated levels of Hs- CRP and IL-6 after delivery are associated with depression during the 6 months post-partum. Psychiatry Res. 2016; 243: 43-48. DOI: 10.1016/j.psychres.2016.02.022
  • Enache D., Pariante C.M., Mondelli V. Markers of central inflammation in major depressive disorder: A systematic review and meta-analysis of studies examining cerebrospinal fluid, positron emission tomography and postmortem brain tissue. Brain Behav Immun. 2019; 81: 24-40. DOI: 10.1016/j.bbi.2019.06.015
  • Jiang H., Zhang Y., Wang Z.Z., Chen N.H. Connexin 43: An Interface Connecting Neuroinflammation to Depression. Molecules. 2023; 28 (4): 1820. DOI: 10.3390/molecules28041820
  • Chen M.J., Kress B., Han X., Moll K., Peng W., Ji R.R., Nedergaard M. Astrocytic CX43 hemichannels and gap junctions play a crucial role in development of chronic neuropathic pain following spinal cord injury. Glia. 2012; 60 (11): 1660-1670. DOI: 10.1002/glia.22384
  • Orellana J.A., Moraga-Amaro R., Díaz-Galarce R., Rojas S., Maturana C.J., Stehberg J., Sáez J.C. Restraint stress increases hemichannel activity in hippocampal glial cells and neurons. Front Cell Neurosci. 2015; 9: 102. DOI: 10.3389/fncel.2015.00102
  • Orellana J.A., Froger N., Ezan P., Jiang J.X., Bennett M.V., Naus C.C., Giaume C., Sáez J.C. ATP and glutamate released via astroglial connexin 43 hemichannels mediate neuronal death through activation of pannexin 1 hemichannels. J Neurochem. 2011; 118 (5): 826-840. DOI: 10.1111/j.1471-4159.2011.07210.x
  • Lei L., Wang Y.T., Hu D., Gai C., Zhang Y. astroglial connexin 43-mediated gap junctions and hemichannels: potential antidepressant mechanisms and the link to neuroinflammation. Cell Mol Neurobiol. 2023; 43 (8): 4023-4040. DOI: 10.1007/s10571-023-01426-5
  • Brooks J.O. 3rd, Bearden C.E., Hoblyn J.C., Woodard S.A., Ketter T.A. Prefrontal and paralimbic metabolic dysregulation related to sustained attention in euthymic older adults with bipolar disorder. Bipolar Disord. 2010; 12 (8): 866-874. DOI: 10.1111/j.1399-5618.2010.00881.x
  • Ropret S., Kouter K., Zupanc T., Videtic Paska A. BDNF methylation and mRNA expression in brain and blood of completed suicides in Slovenia. World J Psychiatry. 2021; 11 (12): 1301-1313. DOI: 10.5498/wjp.v11.i12.1301
  • Steiner J., Walter M., Gos T., Guillemin G.J., Bernstein H.G., Sarnyai Z., Mawrin C., Brisch R., Bielau H., Meyer zu Schwabedissen L., Bogerts B., Myint A.M. Severe depression is associated with increased microglial quinolinic acid in subregions of the anterior cingulate gyrus: evidence for an immune-modulated glutamatergic neurotransmission? J Neuroinflammation. 2011; 8: 94. DOI: 10.1186/1742-2094-8-94
  • Erhardt S., Lim C.K., Linderholm K.R., Janelidze S., Lindqvist D., Samuelsson M., Lundberg K., Postolache T.T., Träskman-Bendz L., Guillemin G.J., Brundin L. Connecting inflammation with glutamate agonism in suicidality. Neuropsychopharmacology. 2013; 38 (5): 743-752. DOI: 10.1038/npp.2012.248
  • Bay-Richter C., Linderholm K.R., Lim C.K., Samuelsson M., Träskman-Bendz L., Guillemin G.J., Erhardt S., Brundin L. A role for inflammatory metabolites as modulators of the glutamate N-methyl-D-aspartate receptor in depression and suicidality. Brain Behav Immun. 2015; 43: 110-117. DOI: 10.1016/j.bbi.2014.07.012
  • Brundin L., Sellgren C.M., Lim C.K., Grit J., Pålsson E., Landén M., Samuelsson M., Lundgren K., Brundin P., Fuchs D., Postolache T.T., Traskman-Bendz L., Guillemin G.J., Erhardt S. An enzyme in the kynurenine pathway that governs vulnerability to suicidal behavior by regulating excitotoxicity and neuroinflammation. Transl Psychiatry. 2016; 6 (8): e865. DOI: 10.1038/tp.2016.133
  • Plancke L., Coton C., Amariei A., Kharfallah R., Duhem S., Danel T., Charrel C.L. Suicide mortality in people with mental disorders: a register-based study in north France. Soc Psychiatry Psychiatr Epidemiol. 2020; 55 (11): 1503-1512. DOI: 10.1007/s00127-020-01892-y
  • Fernández de la Cruz L., Rydell M., Runeson B., D'Onofrio B.M., Brander G., Rück C., Lichtenstein P., Larsson H., Mataix-Cols D. Suicide in obsessive-compulsive disorder: a population-based study of 36 788 Swedish patients. Mol Psychiatry. 2017; 22 (11): 1626-1632. DOI: 10.1038/mp.2016.115
  • Trivedi M.H. Major depressive disorder in primary care: strategies for identification. J Clin Psychiatry. 2020; 81 (2): UT17042BR1C. DOI: 10.4088/JCP.UT17042BR1C
  • Wu S., Ding Y., Wu F., Xie G., Hou J., Mao P. Serum lipid levels and suicidality: a meta-analysis of 65 epidemiological studies. J Psychiatry Neurosci. 2016; 41 (1): 56-69. DOI: 10.1503/jpn.150079
  • Messaoud A., Mensi R., Mrad A., Mhalla A., Azizi I., Amemou B., Trabelsi I., Grissa M.H., Salem N.H., Chadly A., Douki W., Najjar M.F., Gaha L. Is low total cholesterol levels associated with suicide attempt in depressive patients? Ann Gen Psychiatry. 2017; 16: 20. DOI: 10.1186/s12991-017-0144-4
  • Aguglia A., Solano P., Giacomini G., Caprino M., Conigliaro C., Romano M., Aguglia E., Serafini G., Amore M. The Association Between Dyslipidemia and Lethality of Suicide Attempts: A Case-Control Study. Front Psychiatry. 2019; 10: 70. DOI: 10.3389/fpsyt.2019.00070
  • Li H., Zhang X., Sun Q., Zou R., Li Z., Liu S. Association between serum lipid concentrations and attempted suicide in patients with major depressive disorder: A metaanalysis. PLoS One. 2020; 15 (12): e0243847. DOI: 10.1371/journal.pone.0243847
  • Sublette M.E., Galfalvy H.C., Fuchs D., Lapidus M., Grunebaum M.F., Oquendo M.A., Mann J.J., Postolache T.T. Plasma kynurenine levels are elevated in suicide attempters with major depressive disorder. Brain Behav Immun. 2011; 25 (6): 1272-1278. DOI: 10.1016/j.bbi.2011.05.002
  • Bradley K.A., Case J.A., Khan O., Ricart T., Hanna A., Alonso C.M., Gabbay V. The role of the kynurenine pathway in suicidality in adolescent major depressive disorder. Psychiatry Res. 2015; 227 (2-3): 206-212. DOI: 10.1016/j.psychres.2015.03.031
  • Janelidze S., Mattei D., Westrin Å., Träskman-Bendz L., Brundin L. Cytokine levels in the blood may distinguish suicide attempters from depressed patients. Brain Behav Immun. 2011; 25 (2): 335-339. DOI: 10.1016/j.bbi.2010.10.010
  • Brown S.J., Christofides K., Weissleder C., Huang X.F., Shannon Weickert C., Lim C.K., Newell K.A. Sex- and suicide-specific alterations in the kynurenine pathway in the anterior cingulate cortex in major depression. Neuropsychopharmacology. 2023. DOI: 10.1038/s41386-023-01736-8
  • Huang M.H., Chen M.H., Chan Y.E., Li C.T., Tsai S.J., Bai Y.M., Su T.P. Pro-inflammatory cytokines and suicidal behavior among patients with bipolar I disorder. J Psychiatr Res. 2022; 150: 346-352. DOI: 10.1016/j.jpsychires.2021.11.030
  • Karimi M., Goldie L.C., Cruickshank M.N., Moses E.K., Abraham L.J. A critical assessment of the factors affecting reporter gene assays for promoter SNP function: a reassessment of -308 TNF- polymorphism function using a novel integrated reporter system. Eur J Hum Genet. 2009; 17 (11): 1454-1462. DOI: 10.1038/ejhg.2009.80
  • Hajeer A.H., Hutchinson I.V. Influence of TNF-alpha gene polymorphisms on TNF-alpha production and disease. Hum Immunol. 2001; 62 (11): 1191-1199. DOI: 10.1016/s0198-8859(01)00322-6
  • Kim Y.K., Hong J.P., Hwang J.A., Lee H.J., Yoon H.K., Lee B.H., Jung H.Y., Hahn S.W., Na K.S. TNF-alpha - 308G>A polymorphism is associated with suicide attempts in major depressive disorder. J Affect Disord. 2013; 150 (2): 668-672. DOI: 10.1016/j.jad.2013.03.019
  • Zhang L., Verwer R.W.H., Lucassen P.J., Huitinga I., Swaab D.F. Prefrontal cortex alterations in glia gene expression in schizophrenia with and without suicide. J Psychiatr Res. 2020; 121: 31-38. DOI: 10.1016/j.jpsychires.2019.11.002
  • Steiner J., Mawrin C., Ziegeler A., Bielau H., Ullrich O., Bernstein H.G., Bogerts B. Distribution of HLA-DRpositive microglia in schizophrenia reflects impaired cerebral lateralization. Acta Neuropathol. 2006; 112 (3): 305-316. DOI: 10.1007/s00401-006-0090-8
  • Powrózek T., Mlak R., Brzozowska A., Mazurek M., Gołębiowski P., Małecka-Massalska T. Relationship between TNF-α -1031T/C gene polymorphism, plasma level of TNF-α, and risk of cachexia in head and neck cancer patients. J Cancer Res Clin Oncol. 2018; 144 (8): 1423-1434. DOI: 10.1007/s00432-018-2679-4
  • Lang X., Trihn T.H., Wu H.E., Tong Y., Xiu M., Zhang X.Y. Association between TNF-alpha polymorphism and the age of first suicide attempt in chronic patients with schizophrenia. Aging (Albany NY). 2020; 12 (2): 1433-1445. DOI: 10.18632/aging.102692
  • Rantala M.J., Luoto S., Krama T., Krams I. Eating disorders: an evolutionary psychoneuroimmunological approach. Front Psychol. 2019; 10: 2200. DOI: 10.3389/fpsyg.2019.02200
  • Arcelus J., Mitchell A.J., Wales J., Nielsen S. Mortality rates in patients with anorexia nervosa and other eating disorders. A meta-analysis of 36 studies. Arch Gen Psychiatry. 2011; 68 (7): 724-731. DOI: 10.1001/archgenpsychiatry.2011.74
  • Accurso E.C., Sim L., Muhlheim L., Lebow J. Parents know best: Caregiver perspectives on eating disorder recovery. Int J Eat Disord. 2020; 53 (8): 1252-1260. DOI: 10.1002/eat.23200
  • Duncan L., Yilmaz Z., Gaspar H., Walters R., Goldstein J., Anttila V., Bulik-Sullivan B., Ripke S. Eating Disorders Working Group of the Psychiatric Genomics Consortium; Thornton L., Hinney A., Daly M., Sullivan P.F., Zeggini E., Breen G., Bulik C.M. Significant Locus and Metabolic Genetic Correlations Revealed in Genome- Wide Association Study of Anorexia Nervosa. Am J Psychiatry. 2017; 174 (9): 850-858. DOI: 10.1176/appi.ajp.2017.16121402
  • Duncan E.L., Thornton L.M., Hinney A., Daly M.J., Sullivan P.F., Zeggini E., Breen G., Bulik C.M. Genome-Wide Association Study Reveals First Locus for Anorexia Nervosa and Metabolic Correlations. bioRxiv 088815. DOI: 10.1101/088815
  • Reyes-Ortega P., Ragu Varman D., Rodríguez V.M., Reyes-Haro D. Anorexia induces a microglial associated pro-inflammatory environment and correlates with neurodegeneration in the prefrontal cortex of young female rats. Behav Brain Res. 2020; 392: 112606. DOI: 10.1016/j.bbr.2020.112606
  • Kahl K.G., Kruse N., Rieckmann P., Schmidt M.H. Cytokine mRNA expression patterns in the disease course of female adolescents with anorexia nervosa. Psychoneuroendocrinology. 2004; 29 (1): 13-20. DOI: 10.1016/s0306-4530(02)00131-2
  • Lafrance V., Inoue W., Kan B., Luheshi G.N. Leptin modulates cell morphology and cytokine release in microglia. Brain Behav Immun. 2010; 24 (3): 358-365. DOI: 10.1016/j.bbi.2009.11.003
  • Reyes-Ortega P., Ragu Varman D., Rodríguez V.M., Reyes-Haro D. Anorexia induces a microglial associated pro-inflammatory environment and correlates with neurodegeneration in the prefrontal cortex of young female rats. Behav Brain Res. 2020; 392: 112606. DOI: 10.1016/j.bbr.2020.112606
  • Kang D., Kim H.R., Kim K.K., Kim D.H., Jeong B., Jin S., Park J.W., Seong J.Y., Lee B.J. Brain-specific chemokine FAM19A5 induces hypothalamic inflammation. Biochem Biophys Res Commun. 2020; 523 (4): 829-834. DOI: 10.1016/j.bbrc.2019.12.119
  • Maunder K., Molloy E., Jenkins E., Hayden J., Adamis D., McNicholas F. Anorexia Nervosa in vivo cytokine production: a systematic review. Psychoneuroendocrinology. 2023; 158: 106390. DOI: 10.1016/j.psyneuen.2023.106390
  • Specht H.E., Mannig N., Belheouane M., Andreani N.A., Tenbrock K., Biemann R., Borucki K., Dahmen B., Dempfle A., Baines J.F., Herpertz-Dahlmann B., Seitz J. Lower serum levels of IL-1β and IL-6 cytokines in adolescents with anorexia nervosa and their association with gut microbiota in a longitudinal study. Front Psychiatry. 2022; 13: 920665. DOI: 10.3389/fpsyt.2022.920665
  • Corcos M., Guilbaud O., Chaouat G., Cayol V., Speranza M., Chambry J., Paterniti S., Moussa M., Flament M., Jeammet P. Cytokines and anorexia nervosa. Psychosom Med. 2001; 63 (3): 502-504. DOI: 10.1097/00006842-200105000-00021
  • Dalton B., Leppanen J., Campbell I.C., Chung R., Breen G., Schmidt U., Himmerich H. A longitudinal analysis of cytokines in anorexia nervosa. Brain Behav Immun. 2020; 85: 88-95. DOI: 10.1016/j.bbi.2019.05.012
  • Mechelhoff D., van Noort B.M., Weschke B., Bachmann C.J., Wagner C., Pfeiffer E., Winter S. Anti-NMDA receptor encephalitis presenting as atypical anorexia nervosa: an adolescent case report. Eur Child Adolesc Psychiatry. 2015; 24 (11): 1321-1324. DOI: 10.1007/s00787-015-0682-8
  • Gaige S., Barbouche R., Barbot M., Boularand S., Dallaporta M., Abysique A., Troadec J.D. Constitutively active microglial populations limit anorexia induced by the food contaminant deoxynivalenol. J Neuroinflammation. 2022; 19 (1): 280. DOI: 10.1186/s12974-022-02631-7
  • Steiner M. Perinatal mood disorders: position paper. Psychopharmacol Bull. 1998; 34 (3): 301-306.
  • Sedlmayr P., Blaschitz A., Stocker R. The role of placental tryptophan catabolism. Front Immunol. 2014; 5: 230. DOI: 10.3389/fimmu.2014.00230
  • Sherer M.L., Posillico C.K., Schwarz J.M. The psychoneuroimmunology of pregnancy. Front Neuroendocrinol. 2018; 51: 25-35. DOI: 10.1016/j.yfrne.2017.10.006
  • Sha Q., Madaj Z., Keaton S., Escobar Galvis M.L., Smart L., Krzyzanowski S., Fazleabas A.T., Leach R., Postolache T.T., Achtyes E.D., Brundin L. Cytokines and tryptophan metabolites can predict depressive symptoms in pregnancy. Transl Psychiatry. 2022; 12 (1): 35. DOI: 10.1038/s41398-022-01801-8
  • Achtyes E., Keaton S.A., Smart L., Burmeister A.R., Heilman P.L., Krzyzanowski S., Nagalla M., Guillemin G.J., Escobar Galvis M.L., Lim C.K., Muzik M., Postolache T.T., Leach R., Brundin L. Inflammation and kynurenine pathway dysregulation in post-partum women with severe and suicidal depression. Brain Behav Immun. 2020; 83: 239-247. DOI: 10.1016/j.bbi.2019.10.017
  • Sha Q., Achtyes E., Nagalla M., Keaton S., Smart L., Leach R., Brundin L. Associations between estrogen and progesterone, the kynurenine pathway, and inflammation in the post-partum. J Affect Disord. 2021; 281: 9-12. DOI: 10.1016/j.jad.2020.10.052
  • Chang J.P., Lin C.Y., Lin P.Y., Shih Y.H., Chiu T.H., Ho M., Yang H.T., Huang S.Y., Gałecki P., Su K.P. Polyunsaturated fatty acids and inflammatory markers in major depressive episodes during pregnancy. Prog Neuropsychopharmacol Biol Psychiatry. 2018; 80 (Pt C): 273-278. DOI: 10.1016/j.pnpbp.2017.05.008
  • Prescott S., Mutka T., Baumgartel K., Yoo J.Y., Morgan H., Postolache T.T., Seyfang A., Gostner J.M., Fuchs D., Kim K., Groer M.E. Tryptophan metabolism and immune alterations in pregnant Hispanic women with chronic Toxoplasma gondii infection. Am J Reprod Immunol. 2023; 90 (3): e13768. DOI: 10.1111/aji.13768
  • Gjervig Hansen H., Köhler-Forsberg O., Petersen L., Nordentoft M., Postolache T.T., Erlangsen A., Benros M.E. Infections, anti-infective agents, and risk of deliberate self-harm and suicide in a young cohort: a nationwide study. Biol Psychiatry. 2019; 85 (9): 744-751. DOI: 10.1016/j.biopsych.2018.11.008
  • Troyer E.A., Kohn J.N., Hong S. Are we facing a crashing wave of neuropsychiatric sequelae of COVID-19? Neuropsychiatric symptoms and potential immunologic mechanisms. Brain Behav Immun. 2020; 87: 34-39. DOI: 10.1016/j.bbi.2020.04.027
  • Pape K., Tamouza R., Leboyer M., Zipp F. Immunoneuropsychiatry - novel perspectives on brain disorders. Nat Rev Neurol. 2019; 15 (6): 317-328. DOI: 10.1038/s41582-019-0174-4
  • Yip P.S., Cheung Y.T., Chau P.H., Law Y.W. The impact of epidemic outbreak: the case of severe acute respiratory syndrome (SARS) and suicide among older adults in Hong Kong. Crisis 2010; 31: 86-92. DOI: 10.1027/0227-5910/a000015
  • Costanza A., Amerio A., Aguglia A., Serafini G., Amore M., Hasler R., Ambrosetti J., Bondolfi G., Sampogna G., Berardelli I., Fiorillo A., Pompili M., Nguyen K.D. Hyper/ neuroinflammation in COVID-19 and suicide etiopathogenesis: Hypothesis for a nefarious collision? Neurosci Biobehav Rev. 2022; 136: 104606. DOI: 10.1016/j.neubiorev.2022.104606
  • Chen G., Wu D., Guo W., Cao Y., Huang D., Wang H., Wang T., Zhang X., Chen H., Yu H., Zhang X., Zhang M., Wu S., Song J., Chen T., Han M., Li S., Luo X., Zhao J., Ning Q. Clinical and immunological features of severe and moderate coronavirus disease 2019. J Clin Invest. 2020; 130 (5): 2620-2629. DOI: 10.1172/JCI137244
  • Hadjadj J., Yatim N., Barnabei L., Corneau A., Boussier J., Smith N., Péré H., Charbit B., Bondet V., Chenevier- Gobeaux C., Breillat P., Carlier N., Gauzit R., Morbieu C., Pène F., Marin N., Roche N., Szwebel T.A., Merkling S.H., Treluyer J.M., Veyer D., Mouthon L., Blanc C., Tharaux P.L., Rozenberg F., Fischer A., Duffy D., Rieux- Laucat F., Kernéis S., Terrier B. Impaired type I interferon activity and inflammatory responses in severe COVID-19 patients. Science. 2020; 369 (6504): 718-724. DOI: 10.1126/science.abc6027
  • Garcia-Beltran W.F., Lam E.C., Astudillo M.G., Yang D., Miller T.E., Feldman J., et al. COVID-19-neutralizing antibodies predict disease severity and survival. Cell. 2021; 184 (2): 476-488.e11. DOI: 10.1016/j.cell.2020.12.015
  • Зотов П.Б., Ахметьянов М.А., Булыгина И.Е., Гарагашева Е.П., Голенков А.В., Деомидов Е.С., Игумнов С.А., Кичерова О.А., Козлов В.А., Любов Е.Б., Меринов А.В., Орлов Ф.В., Петров И.М., Пономарёва М.Н., Рейхерт Л.И., Скрябин Е.Г., Шидин В.А. COVID-19: психические и неврологические последствия: руководство для врачей / под ред. П.Б. Зотова. М.: ГЭОТАР-Медиа, 2023; 224 c. [Zotov P.B., Akhmetyanov M.A., Bulygina I.E., Garagasheva E.P., Golenkov A.V., Deomidov E.S., Igumnov S.A., Kicherova O.A., Kozlov V.A., Lyubov E.B., Merinov A.V., Orlov F.V., Petrov I.M., Ponomaryova M.N., Reichert L.I., Skryabin E.G., Shidin V.A. COVID-19: psychiatric and neurological consequences: a guide for doctors / ed. P.B. Zotov. Moscow: GEOTARMedia, 2023; 224 p. (In Russ)
  • Klein R.S. Mechanisms of coronavirus infectious disease 2019-related neurologic diseases. Curr Opin Neurol. 2022; 35 (3): 392-398. DOI: 10.1097/WCO.0000000000001049
  • Yu X., Wang S., Wu W., Chang H., Shan P., Yang L., Zhang W., Wang X. Exploring new mechanism of depression from the effects of virus on nerve cells. Cells. 2023; 12 (13): 1767. DOI: 10.3390/cells12131767
  • Calderón-Garcidueñas L., González-Maciel A., Reynoso- Robles R., Kulesza R.J., Mukherjee P.S., Torres- Jardón R., Rönkkö T., Doty R.L. Alzheimer's disease and alpha-synuclein pathology in the olfactory bulbs of infants, children, teens and adults ≤ 40 years in Metropolitan Mexico City. APOE4 carriers at higher risk of suicide accelerate their olfactory bulb pathology. Environ Res. 2018; 166: 348-362. DOI: 10.1016/j.envres.2018.06.027
  • Goldstein M.R., Mascitelli L. Identifying those at risk for COVID-19 related suicide. Response to "Hyper / neuroinflammation in COVID-19 and suicide etiopathogenesis: Hypothesis for a nefarious collision?". Neurosci Biobehav Rev. 2022; 140: 104785. DOI: 10.1016/j.neubiorev.2022.104785
  • Filev R., Lyubomirova M., Bogov B., Kalinov K., Hristova J., Svinarov D., Rostaing L. IL-6 and SAA – Strong Predictors for the Outcome in COVID-19 CKD Patients. Int. J. Mol. Sci. 2024; 25: 311. DOI: 10.3390/ijms25010311
  • Aly L., Sondergeld R., Hölzle P., Frank A., Knier B., Pausch E., Dommasch M., Förstl H., Fatke B. Die COVID-19-Pandemie veränderte nicht die Zahl, aber die Art psychiatrischer Notfälle: Versorgungsdaten aus Vergleichszeiträumen von 2019 und 2020 [The COVID-19 pandemic has not changed the number but the type of psychiatric emergencies: A comparison of care data between 2019 and 2020]. Nervenarzt. 2020; 91 (11): 1047-1049. German. DOI: 10.1007/s00115-020-00973-2
  • Boldrini T., Girardi P., Clerici M., Conca A., Creati C., Di Cicilia G., Ducci G., Durbano F., Maci C., Maone A., Nicolò G., Oasi O., Percudani M., Polselli G.M., Pompili M., Rossi A., Salcuni S., Tarallo F., Vita A., Lingiardi V. Italian Network for Research on Mental Health during COVID-19 Pandemic. Consequences of the COVID-19 pandemic on admissions to general hospital psychiatric wards in Italy: Reduced psychiatric hospitalizations and increased suicidality. Prog Neuropsychopharmacol Biol Psychiatry. 2021; 110:110304. DOI: 10.1016/j.pnpbp.2021.110304
  • Montalbani B., Bargagna P., Mastrangelo M., Sarubbi S., Imbastaro B., De Luca G.P., Anibaldi G., Erbuto D., Pompili M., Comparelli A. The COVID-19 outbreak and subjects with mental disorders who presented to an Italian psychiatric emergency department. J Nerv Ment Dis. 2021; 209 (4): 246-250. DOI: 10.1097/NMD.0000000000001289
  • Yan Y., Hou J., Li Q., Yu N.X. Suicide before and during the COVID-19 pandemic: a systematic review with metaanalysis. Int J Environ Res Public Health. 2023; 20 (4): 3346. DOI: 10.3390/ijerph20043346
  • The Washington Post. Japan and South Korea see surge of suicides among young women, raising new questions about pandemic stress. Accessed December 3, 2021. https://www.washingtonpost.com/world/ asia_pacific/japan-suicides-pandemic-women/ 2020/11/28/0617e3a2-fdbd-11ea-b0e4-350e4e60cc 91_story.html
  • CNBC. Suicide attempts among adolescent girls surged by more than 50% during pandemic, CDC says. Accessed December 3, 2021. https://www.cnbc.com/amp/2021/06/11/suicideattemptsamong-young-girls-surge-by-more-than-50percent-duringpandemic-cdc-says-.html
  • Phiri P., Ramakrishnan R., Rathod S., Elliot K., Thayanandan T., Sandle N., Haque N., Chau S.W., Wong O.W., Chan S.S., Wong E.K., Raymont V., Au-Yeung S.K., Kingdon D., Delanerolle G. An evaluation of the mental health impact of SARS-CoV-2 on patients, general public and healthcare professionals: A systematic review and meta-analysis. EClinicalMedicine. 2021; 34: 100806. DOI: 10.1016/j.eclinm.2021.100806
  • Leske S., Kõlves K., Crompton D., Arensman E., de Leo D. Real-time suicide mortality data from police reports in Queensland, Australia, during the COVID-19 pandemic: an interrupted time-series analysis. Lancet Psychiatry. 2021; 8 (1): 58-63. DOI: 10.1016/S2215-0366(20)30435-1
  • McIntyre A., Tong K., McMahon E., Doherty A.M. COVID-19 and its effect on emergency presentations to a tertiary hospital with self-harm in Ireland. Ir J Psychol Med. 2021; 38 (2): 116-122. DOI: 10.1017/ipm.2020.116
  • Song H., Lei N., Zeng L., Li X., Li X., Liu Y., Liu J., Wu W., Mu J., Feng Q. Genetic predisposition to subjective well-being, depression, and suicide in relation to COVID- 19 susceptibility and severity. J Affect Disord. 2023; 335: 233-238. DOI: 10.1016/j.jad.2023.05.019
  • Pirkis J., John A., Shin S., DelPozo-Banos M., Arya V., Analuisa-Aguilar P., et al. Suicide trends in the early months of the COVID-19 pandemic: an interrupted timeseries analysis of preliminary data from 21 countries. Lancet Psychiatry. 2021; 8 (7): 579-588. DOI: 10.1016/S2215-0366(21)00091-2
  • Okada M. Is an increase in Japan's suicides caused by COVID-19 alone? Asian J Psychiatr. 2022; 78: 103320. DOI: 10.1016/j.ajp.2022.103320
  • Козлов В.А., Сапожников С.П., Голенков А.В. Суицидальное поведение: генетический аспект гендерного парадокса. Суицидология. 2021; 12 (2): 31-50. [Kozlov V.A., Sapozhnikov S.P., Golenkov A.V. Suicidal behavior: the genetic aspect of the gender paradox. Suicidology. 2021; 12 (2): 31-50.] (In Russ / Engl) DOI: 10.32878/suiciderus.21-12-02(43)-31-50
  • Okada M., Matsumoto R., Motomura E., Shiroyama T., Murata M. Exploring characteristics of increased suicide during the COVID-19 pandemic in Japan using provisional governmental data. Lancet Reg Health West Pac. 2022; 24: 100481. DOI: 10.1016/j.lanwpc.2022.100481
  • Mevorach T., Zur G., Benaroya-Milshtein N., Apter A., Fennig S., Barzilay S. A following wave pattern of suicide- related pediatric emergancy room admissions during the COVID-19 Pandemic. Int J Environ Res Public Health. 2023; 20 (2): 1619. DOI: 10.3390/ijerph20021619
  • Ding O.J., Kennedy G.J. Understanding vulnerability to late-life suicide. Curr Psychiatry Rep. 2021; 23 (9): 58. DOI: 10.1007/s11920-021-01268-2
  • Rothman S., Sher L. Suicide prevention in the COVID-19 era. Prev Med. 2021; 152 (Pt 1): 106547. DOI: 10.1016/j.ypmed.2021.106547
  • Matsumoto R., Motomura E., Okada M. Impacts of complete unemployment rates disaggregated by reason and duration on suicide mortality from 2009-2022 in Japan. Healthcare (Basel). 2023; 11 (20): 2806. DOI: 10.3390/healthcare11202806
  • Козлов В.А., Голенков А.В. Связь продаж алкоголя с девиантным поведением в Чувашии. Научный форум. Сибирь. 2023; 9 (2): 33-36. [Kozlov V.A., Golenkov A.V. Connection of alcohol sales with deviant behaviour in Chuvashia. Scientific forum. Siberia. 2023; 9 (2): 33-36.] (In Russ)
  • Bak J., Shim S.H., Kwon Y.J., Lee H.Y., Kim J.S., Yoon H., Lee Y.J. The Association between Suicide Attempts and Toxoplasma gondii Infection. Clin Psychopharmacol Neurosci. 2018; 16 (1): 95-102. DOI: 10.9758/cpn.2018.16.1.95
  • Alvarado-Esquivel C., Sánchez-Anguiano L.F., Arnaud- Gil C.A., López-Longoria J.C., Molina-Espinoza L.F., Estrada- Martínez S., Liesenfeld O., Hernández-Tinoco J., Sifuentes-Álvarez A., Salas-Martínez C. Toxoplasma gondii infection and suicide attempts: a case-control study in psychiatric outpatients. J Nerv Ment Dis. 2013; 201 (11): 948-952. DOI: 10.1097/NMD.0000000000000037
  • Desmettre T. Toxoplasmosis and behavioural changes. J Fr Ophtalmol. 2020; 43 (3): e89-e93. DOI: 10.1016/j.jfo.2020.01.001
  • Cook T.B., Brenner L.A., Cloninger C.R., Langenberg P., Igbide A., Giegling I., Hartmann A.M., Konte B., Friedl M., Brundin L., Groer M.W., Can A., Rujescu D., Postolache T.T. "Latent" infection with Toxoplasma gondii: association with trait aggression and impulsivity in healthy adults. J Psychiatr Res. 2015; 60: 87-94. DOI: 10.1016/j.jpsychires.2014.09.019
  • Coryell W., Wilcox H., Evans S.J., Pandey G.N., Jones- Brando L., Dickerson F., Yolken R. Latent infection, inflammatory markers and suicide attempt history in depressive disorders. J Affect Disord. 2020; 270: 97-101. DOI: 10.1016/j.jad.2020.03.057
  • González-Castro T.B., Tovilla-Zárate C.A., Juárez-Rojop I.E., López-Narváez M.L., Pérez-Hernández N., Rodríguez-Pérez J.M., Genis-Mendoza A.D. The role of gene polymorphisms, and analysis of peripheral and central levels of interleukins in suicidal behavior: A systematic review. J Affect Disord. 2021; 279: 398-411. DOI: 10.1016/j.jad.2020.10.024
  • Carmen J.C., Sinai A.P. Suicide prevention: disruption of apoptotic pathways by protozoan parasites. Mol Microbiol. 2007; 64 (4): 904-916. DOI: 10.1111/j.1365-2958.2007.05714.x
  • Kirkland J.L., Tchkonia T. Cellular senescence: a translational perspective. EBioMedicine. 2017; 21: 21-28. DOI: 10.1016/j.ebiom.2017.04.013
  • Tower J. Programmed cell death in aging. Ageing Res Rev. 2015; 23 (Pt A): 90-100. DOI: 10.1016/j.arr.2015.04.002
  • Schneider C.A., Figueroa Velez D.X., Orchanian S.B., Shallberg L.A., Agalliu D., Hunter C.A., Gandhi S.P., Lodoen M.B. Toxoplasma gondii dissemination in the brain is facilitated by infiltrating peripheral immune. Cells. mBio. 2022; 13 (6): e0283822. DOI: 10.1128/mbio.02838-22
  • Olivera G.C., Ross E.C., Peuckert C., Barragan A. Blood-brain barrier-restricted translocation of Toxoplasma gondii from cortical capillaries. Elife. 2021; 10: e69182. DOI: 10.7554/eLife.69182
  • Козлов В.А., Зотов П.Б., Голенков А.В. Суицид: генетика и патоморфоз. Монография. Тюмень: Вектор Бук, 2023. 200 с. [Kozlov V.A., Zotov P.B., Golenkov A.V. Suicide: genetics and pathomorphosis. Monography. Tyumen: Vector Book, 2023. 200 с.] (In Russ) ISBN 978-5-91409-572-4
Еще
Статья научная