Дистанционные методы оценки деградации высокогорных пастбищ Армении

Автор: Тепаносян Г.О., Асмарян Ш.Г., Мурадян В.С., Сагателян А.К.

Журнал: Журнал Сибирского федерального университета. Серия: Техника и технологии @technologies-sfu

Статья в выпуске: 6 т.10, 2017 года.

Бесплатный доступ

В Армении деградация почв обусловлена разными факторами, в том числе и чрезмерным стравливанием пастбищ, и является серьезной проблемой с точки зрения продовольственной безопасности и устойчивого развития. Оценка деградации почв важна для определения возможных последствий и потенциальных мер управления. В данной работе рассматривается возможность определения отдельных компонентов земной поверхности, связанных с деградацией (ППР, ППОП и ППК), методами ЛСР и НРВИ-АСС, используя космический снимок QuickBird, и их применимость для оценки и картографирования деградированности пастбищных земель. Как показывают результаты, методы ЛСР и НРВИ-АСС применительно к космическому снимку QuickBird дают уникальную возможность для точного определения ППР, ППОП, а предложенный метод оценки и картографирования деградации почв адекватно отражает реальную ситуацию.

Еще

Деградация почв, эрозия, стравливание пастбищ, дистанционное зондирование, линейное спектральное разделение, снимки quickbird

Короткий адрес: https://sciup.org/146115244

IDR: 146115244   |   DOI: 10.17516/1999-494X2017-10-6-764-774

Список литературы Дистанционные методы оценки деградации высокогорных пастбищ Армении

  • Zhihui G., Peijun S., Jin C. Estimation of grassland degradation based on historical maximum growth model using with remote sensing data. The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, 2008, 37(B8), 895-900.
  • Добровольский Г.В. Деградация и охрана почв. М.: Изд. Московского университета, 2002, 651 с.
  • Pimental D. Soil erosion: A food and environmental threat. Environment, Development and Sustainability. Springer, 2006, 8(1), 119-137.
  • Aleksanyan K., Muradyan V. Geoecological consequences of degradation of Armenia’s soil. In: L. Valesyan, ed. Geographical Science in Armenia: the Present and Future, 2006 Yerevan: Publ.h. YSU, 385-392.
  • Saghatelyan A., Asmaryan Sh., Muradyan V., Tepanosyan G. The Utility for Assessing the Ecological State and Managing Armenian’s Farmlands. Journal of Geological Resource and Engineering, 2014, 4, 222-228.
  • Ballayan D. Soil degradation: Biodiversity and land degradation. ESCAP environment statistics course, FAO, 2000, Rome.
  • Jafari R., Lewis M.M., Ostendorf B. An image-based diversity index for assessing land degradation in an arid environment in South Australia. Journal of Arid Environment, 2008, 72, 1282-1293.
  • Qingzhu G., Yu’e L., Yunfan W., Erda L., Wei X., Wangzha J., Baoshan W., Wenfu L. Grassland degradation in Northern Tibet based on remote sensing data. J. Geographical Sciences, 2006, 16(2), 165-173.
  • De Asis A.M., Omasa K. Estimation of vegetation parameter for modeling soil erosion using linear Spectral Mixture Analysis of Landsat ETM data. ISPRS Journal of Photogrammetry & Remote Sensing, 2007, 62, 309-324.
  • De Asis A.M., Omasa K., Oki K., Shimizu Y. Accuracy and applicability of linear spectral unmixing in delineating potential erosion areas in tropical watersheds. International Journal of Remote Sensing, 2008, 29(14), 4151-4171.
  • Haboudane D., Bonn F., Royer A., Sommer S., Mehl W. Land degradation and erosion risk mapping by fusion of spectrally-based information and digital geomorphometric attributes. International Journal of Remote Sensing, 2002, 23(18), 3795-3820.
  • Koch M. Geological controls of land degradation as detected by remote sensing: a case study in Los Monegros, north-east Spain. International Journal of Remote Sensing, 2000, 21(3), 457-473.
  • Metternicht G.I., Fermont A. Estimating Erosion Surface Features by Linear Mixture Modeling. Remote Sensing of Environment, 1998, 64(3), 254-265.
  • Lehnert L.W., Meyer H., Meyer N., Reudenbach Ch., Bendix J. A hyperspectral indicator system for rangeland degradation on theTibetan Plateau: A case study towards spaceborne monitoring. Ecological Indicators, 2014, 39, 54-64.
  • Xiao J., Moody A. A. comparison of methods for estimating fractional green vegetation cover within a desert-to-upland transition zone in central New Mexico, USA. Remote Sensing of Environment, 2005, 98, 237-250
  • Plaza A., Martínez P., Pérez R., Plaza J. Spatial/Spectral Endmember Extraction by Multidimensional Morphological Operations. IEEE Transaction on Geoscience and Remote Sensing, 2002, 40(9), 2025-2041.
  • Bioucas-Dias J.M., Nascimento J. Hyperspectral subspace identification. IEEE Transactions of Geoscience and Remote Sensing, 2005, 46 (8), 2435-2445.
  • Camps-Valls G., Tuia D., Gómez-Chova L., Jiménez S., Malo J. Remote Sensing Image Processing. Morgan & Claypool, 2012, 176 p.
  • Green A.A., Berman M., Switzer P., and Craig M.D. A transformation for ordering multispectral data in terms of image quality with implications for noise removal. IEEE Transactions of Geoscience and Remote Sensing, 1988, 26 (1), 65-74.
  • Lee J.B., Woodyatt A.S., Berman M. Enhancement of high spectral resolution remote-sensing data by noise-adjusted principal components transform. IEEE Transactions of Geoscience and Remote Sensing, 1990, 28 (3), 295-304.
  • Berman M., Kiiveri H., Lagerstrom R., Ernst A., Dunne R., Huntington J. F. ICE: A Statistical Approach to Identifying Endmembers in Hyperspectral Images. IEEE Transaction on Geoscience and Remote Sensing, 2004, 42(10), 2085-2095.
  • Gutman G., Ignatov A. The derivation of the green vegetation fraction from NOAA/AVHRR data for use in numerical weather prediction models. International Journal of Remote Sensing, 1998, 19 (8), 1533-1543.
  • Akiyama T., Kawamura K. Grassland degradation in China: methods of mon-itoring, management and restoration. Grassland science, 2007, 53(1), 1-17.
  • Gao Q.Z., Wan Y.F., Xu H.M., Li Y., Jiangcun W.Z., Borjigidai A. Alpine grass-land degradation index and its response to recent climate variability in NorthernTibet, China. Quaternary International, 2010, 226(1-2), 143-150.
  • Meusburger K., Banninger D., Alewell C. Estimating vegetation parameter for soil erosion assessment in an alpine catchment by means of QuickBird imagery. International Journal of Applied Earth Observation and Geoinformation, 2010, 12, 201-207.
  • Pickup G., Bastin G.N., Chewings V.H. Remote-sensing-based condition assessment for nonequilibrium rangelands under large-scale commercial graz-ing. Ecological Applications, 1994, 4(3), 497-517.
  • Погосян Д.А. Сельскохозяйственная оценка природных ресурсов территории Армянской ССР. Издательство АН Армянской ССР. Ереван, 1986, 221 с.
  • Krause K. Radiometric Use of QuickBird Imagery, Technical Note. DigitalGlobe, Longmont, Colorado, USA, 2005, 17 p.
  • Stocking M., Murnaghan N. Handbook for the Field Assessment of Land Degradation. Earthscan Publications Ltd., 2000, 184 p.
  • Verger A., Martinez B., Camacho-de Coca F., Garcia-Haro F.J. Accuracy assessment of fraction of vegetation cover and leaf area index estimates from pragmatic methods in a cropland area. International Journal of Remote Sensing, 2009, 30(10), 2685-2704.
  • Шовенгердт Р.А. Дистанционное зондирование. Методы и модели обработки изображений. М.: Техносфера, 2010, 560 с.
  • Boardman J.W. Automated spectral unmixing of AVIRIS data using convex geometry concepts. In: Summaries, Fourth JPL Airborne Geoscience Workshop, JPL Publication 93-26, 1993, 11-14.
  • Boardman J.W., Kruse F.A., Green R.O. Mapping target signatures via partial unmixing of AVIRIS data. In: Summaries, Fifth JPL Airborne Geoscience Workshop, JPL Publication 95-1, 1995, 23-26.
  • Elmore A.J., Mustard J.F., Manning S.J., Lobell D.B. Quantifying Vegetation Change in Semiarid Environments Precision and Accuracy of Spectral Mixture Analysis and the Normalized Difference Vegetation Index. Remote Sensing of Environment, 2000, 73(1), 87-102.
  • Zhang X., Liao Ch., Li J., Sun Q. Fractional vegetation cover estimation in arid and semiarid environments using HJ-1 satellite hyperspectral data. International Journal of Applied Earth Observation and Geoinformation, 2013, 21, 506-512.
Еще
Статья научная