ДНК маркеры и "микросателлитный код" (обзор)

Автор: Глазко В.И., Косовский Г.Ю., Глазко Т.Т., Федорова Л.М.

Журнал: Сельскохозяйственная биология @agrobiology

Рубрика: Обзоры, проблемы

Статья в выпуске: 2 т.58, 2023 года.

Бесплатный доступ

Одной из центральных проблем в современном животноводстве остается поиск генетических маркеров, которые упростили бы отбор и подбор животных для скрещиваний и повысили вероятность получения потомства с желательными хозяйственно ценными признаками. В обзоре рассмотрены примеры наиболее успешного применения различных типов ДНК маркеров для решения конкретных селекционных задач: микросателлитов - для исключения ошибок происхождения, мононуклеотидных полиморфизмов (SNP) - для создания карт геномных районов, полиморфизм в которых ассоциирован с модификацией фенотипических характеристик (D.J. Rigden, X.M. Fer-nández, 2023) и локализацией ключевых генов адаптации к давлению естественного отбора на краях ареалов и в зонах рискованного животноводства (E.K. Cheruiyot с соавт., 2022; L. Buggiotti с соавт., 2021, 2022), областей с повышенным варьированием копийности геномных участков (CNV) - для анализа механизмов ответа полигенных систем (сенсорных, иммунных, транспортерных) на воздействие факторов естественного и искусственного отбора (Y. Huang с соавт., 2021; P. Davoudi с соавт., 2022). Обсуждается преимущественное вовлечение диспергированных и тандемных повторов (в частности, микросателлитных) как элементов регуляторных сетей в эпигенетическую и фенотипическую изменчивость (R.P. Kumar с соавт., 2010). Рассматривается сложная структурно-функциональная организация микросателлитов, индивидуальная изменчивость некоторых локусов, их участие в процессах эволюции, рекомбинации, транскрипции, в формировании вторичной структуры ДНК, модификации архитектоники интерфазного ядра, в регуляции профилей генной экспрессии (R.P. Kumar с соавт., 2010; X. Tang с соавт., 2022). Исследования регуляторных сетей приобретают особое значение в связи с накоплением информации о существенных различиях по размерам генома у животных разных таксонов, распространенности и составу мобильных генетических элементов (источников компонентов регуляторных сетей) при сходстве числа генов, кодирующих белки (В.И. Глазко с соавт., 2022). Эти данные свидетельствуют о перспективности полилокусного генотипирования на основе микросателлитных и диспергированных повторов для выявления особенностей популяционно-генетической структуры, консолидированности и различий между группами животных.

Еще

Днк маркеры, микросателлиты, str, мононуклеотидные полиморфизмы, snp, изменчивость числа копий, cnv, полногеномные исследования ассоциаций, gwas

Короткий адрес: https://sciup.org/142238877

IDR: 142238877   |   DOI: 10.15389/agrobiology.2023.2.223rus

Список литературы ДНК маркеры и "микросателлитный код" (обзор)

  • Серебровский А.С. Генетический анализ. М., 1970.
  • Глазко В.И. Генные и геномные подписи доместикации. Сельскохозяйственная биология, 2018, 53(4): 659-672 (doi: 10.15389/agrobiology.2018.4.659rus).
  • Thakur J., Packiaraj J., Henikoff S. Sequence, chromatin and evolution of satellite DNA. Int. J. Mol. Sci., 2021, 22: 4309 (doi: 10.3390/ijms22094309).
  • Li C., Tian D., Tang B., Liu X., Teng X., Zhao W., Zhang Z., Song S. Genome variation map: a worldwide collection of genome variations across multiple species. Nucleic Acids Res., 2021, 49(D1): D1186-D1191 (doi: 10.1093/nar/gkaa1005).
  • Wang Z.H., Zhu Q.H., Li X., Zhu J.W., Tian D.M., Zhang S.S., Kang H.L., Li C.P., Dong L.L., Zhao W.M., Li M.H. iSheep: an integrated resource for sheep genome, variant and phenotype. Front. Genet., 2021, 12: 714852 (doi: 10.3389/fgene.2021.714852).
  • Kirichenko A.V., Zlobin A.S., Shashkova T.I., Volkova N.A., Iolchiev B.S., Bagirov V.A., Boro-din P.M., Karssen L.С., Tsepilov Y.A., Aulchenko Y.S. The GWAS-MAP|ovis platform for ag-gregation and analysis of genome-wide association study results in sheep. Vavilovskii Zhurnal Ge-netiki i Selektsii, 2022, 26(4): 378-384 (doi: 10.18699/VJGB-22-46).
  • Pös O., Radvanszky J., Buglyó G., Pös Z., Rusnakova D., Nagy B., Szemes T. DNA copy number variation: main characteristics, evolutionary significance, and pathological aspects. Biomed. J., 2021, 44(5): 548-559 (doi: 10.1016/j.bj.2021.02.003).
  • Strillacci M.G., Gorla E., Cozzi M.C., Vevey M., Genova F., Scienski K., Longeri M., Bag-nato A. A copy number variant scan in the autochthonous Valdostana Red Pied cattle breed and comparison with specialized dairy populations. PLoS ONE, 2018, 3(9): e0204669 (doi: 10.1371/journal.pone.0204669).
  • Lee Y.L., Bosse M., Mullaart E., Groenen M.A.M., Veerkamp R.F., Bouwman A.C. Functional and population genetic features of copy number variations in two dairy cattle populations. BMC Genomics, 2020, 21(1): 89 (doi: 10.1186/s12864-020-6496-1).
  • Qiu Y., Ding R., Zhuang Z., Wu J., Yang M., Zhou S., Ye Y., Geng Q., Xu Z., Huang S., Cai G., Wu Z., Yang J. Genome-wide detection of CNV regions and their potential association with growth and fatness traits in Duroc pigs. BMC Genomics, 2021, 22(1): 332 (doi: 10.1186/s12864-021-07654-7).
  • Davoudi P., Do D.N., Rathgeber B., Colombo S.M., Sargolzaei M., Plastow G., Wang Z., Karimi K., Hu G., Valipour S., Miar Y. Genome-wide detection of copy number variation in American mink using whole-genome sequencing. BMC Genomics, 2022, 23(1): 649 (doi: 10.1186/s12864-022-08874-1)
  • Yuan C., Lu Z., Guo T., Yue Y., Wang X., Wang T., Zhang Y., Hou F., Niu C., Sun X., Zhao H., Zhu S., Liu J., Yang B. A global analysis of CNVs in Chinese indigenous fine-wool sheep populations using whole-genome resequencing. BMC Genomics, 2021, 22(1): 78 (doi: 10.1186/s12864-021-07387-7).
  • Laseca N., Molina A., Valera M., Antonini A., Demyda-Peyrás S. Copy number variation (CNV): a new genomic insight in horses. Animals (Basel), 2022, 12(11): 1435 (doi: 10.3390/ani12111435).
  • Bhanuprakash V., Chhotaray S., Pruthviraj D.R., Rawat C., Karthikeyan A., Panigrahi M. Copy number variation in livestock: a mini review. Vet. World, 2018, 11(4): 535-541 (doi: 10.14202/vet-world.2018.535-541).
  • Seroussi E., Glick G., Shirak A., Yakobson E., Weller J.I., Ezra E., Zeron Y. Analysis of copy loss and gain variations in Holstein cattle autosomes using BeadChip SNPs. BMC Genomics, 2010, 11: 673 (doi: 10.1186/1471-2164-11-673).
  • Wang Z., Guo J., Guo Y., Yang Y., Teng T., Yu Q., Wang T., Zhou M., Zhu Q., Wang W., Zhang Q., Yang H. Genome-wide detection of CNVs and association with body weight in sheep based on 600K SNP Arrays. Front. Genet., 2020, 11: 558 (doi: 10.3389/fgene.2020.00558).
  • Taghizadeh S., Gholizadeh M., Rahimi-Mianji G., Moradi M.H., Costilla R., Moore S., Di Gerlando R. Genome-wide identification of copy number variation and association with fat dep-osition in thin and fat-tailed sheep breeds. Sci. Rep., 2022, 12(1): 8834 (doi: 10.1038/s41598-022-12778-1).
  • Kalds P., Zhou S., Gao Y., Cai B., Huang S., Chen Y., Wang X. Genetics of the phenotypic evolution in sheep: a molecular look at diversity-driving genes. Genet. Sel. Evol., 2022, 54(1): 61 (doi: 10.1186/s12711-022-00753-3).
  • Feng Y., Zhang Y., Ying C., Wang D., Du C. Nanopore-based fourth-generation DNA sequenc-ing technology. Genom. Proteom. Bioinform., 2015, 13: 4-16 (doi: 10.1016/j.gpb.2015.01.009).
  • Suminda G.G.D., Ghosh M., Son Y.O. The innovative informatics approaches of high-through-put technologies in livestock: spearheading the sustainability and resiliency of agrigenomics re-search. Life (Basel), 2022, 12(11):1893 (doi: 10.3390/life12111893).
  • Nolte W., Alkhoder H., Wobbe M., Stock K.F., Kalm E., Vosgerau S., Krattenmacher N., Thal-ler G., Tetens J., Kühn C. Replacement of microsatellite markers by imputed medium-density SNP arrays for parentage control in German warmblood horses. J. Appl .Genet., 2022, 63(4): 783-792 (doi: 10.1007/s13353-022-00725-9).
  • Marina H., Suarez-Vega A., Pelayo R., Gutiérrez-Gil B., Reverter A., Esteban-Blanco C., Ar-ranz J.J. Accuracy of imputation of microsatellite markers from a 50K SNP chip in Spanish Assaf sheep. Animals (Basel), 2021, 11(1): 86 (doi: 10.3390/ani11010086).
  • McClure M.C., Sonstegard T.S., Wiggans G.R., Van Eenennaam A.L., Weber K.L., Penedo C.T., Berry D.P., Flynn J., Garcia J.F., Carmo A.S., Regitano L.C., Albuquerque M., Silva M.V., Machado M.A., Coffey M., Moore K., Boscher M.Y., Genestout L., Mazza R., Taylor J.F., Schnabel R.D., Simpson B., Marques E., McEwan J.C., Cromie A., Coutinho L.L., Kuehn L.A., Keele J.W., Piper E.K., Cook J., Williams R., Bovine HapMap Consortium, Van Tassell C.P. Imputation of microsatellite alleles from dense SNP genotypes for parentage verification across mul-tiple Bos taurus and Bos indicus breeds. Front Genet., 2013, 4: 176 (doi: 10.3389/fgene.2013.00176).
  • McClure M., Sonstegard T., Wiggans G., Van Tassell C. Imputation of microsatellite alleles from dense SNP genotypes for parental verification. Front. Genet., 2012, 3: 140 (doi: 10.3389/fgene.2012.00140).
  • Xu L., Haasl R.J., Sun J., Zhou Y., Bickhart D.M., Li J., Song J., Sonstegard T.S., Van Tas-sell C.P., Lewin H.A., Liu G.E. Systematic profiling of short tandem repeats in the cattle genome. Genome Biol. Evol., 2017, 9(1): 20-31 (doi: 10.1093/gbe/evw256).
  • Jiang Y., Song H., Gao H., Zhang Q., Ding X. Exploring the optimal strategy of imputation from SNP array to whole-genome sequencing data in farm animals. Front. Genet., 2022, 13: 963654 (doi: 10.3389/fgene.2022.963654).
  • Crysnanto D., Leonard A.S., Fang Z.H., Pausch H. Novel functional sequences uncovered through a bovine multiassembly graph. Proc. Natl. Acad. Sci. USA, 2021, 118(20): e2101056118 (doi: 10.1073/pnas.2101056118).
  • Chen S., Liu S., Shi S., Jiang Y., Cao M., Tang Y., Li W., Liu J., Fang L., Yu Y., Zhang S. Comparative epigenomics reveals the impact of ruminant-specific regulatory elements on complex traits. BMC Biol., 2022, 20(1): 273 (doi: 10.1186/s12915-022-01459-0).
  • Li J., Xiang Y., Zhang L., Qi X., Zheng Z., Zhou P., Tang Z., Jin Y., Zhao Q., Fu Y., Zhao Y., Li X., Fu L., Zhao S. Enhancer-promoter interaction maps provide insights into skeletal muscle-related traits in pig genome. BMC Biol., 2022, 20(1): 136 (doi: 10.1186/s12915-022-01322-2).
  • Hayes B.J., Bowman P.J., Chamberlain A.J., Savin K., van Tassell C.P., Sonstegard T.S., God-dard M.E. A validated genome wide association study to breed cattle adapted to an environment altered by climate change. PLoS ONE, 2009, 4(8): e6676 (doi: 10.1371/journal.pone.0006676).
  • Cheruiyot E.K., Haile-Mariam M., Cocks B.G., Pryce J.E. Improving genomic selection for heat tolerance in dairy cattle: current opportunities and future directions. Front. Genet., 2022, 13: 894067 (doi: 10.3389/fgene.2022.894067).
  • Buggiotti L., Yurchenko A.A., Yudin N.S., Vander Jagt C.J., Vorobieva N.V., Kusliy M.A., Va-siliev S.K., Rodionov A.N., Boronetskaya O.I., Zinovieva N.A., Graphodatsky A.S., Daetw-yler H.D., Larkin D.M. Demographic history, adaptation, and NRAP convergent evolution at amino acid residue 100 in the world northernmost cattle from Siberia. Mol. Biol. Evol., 2021, 38(8): 3093-3110 (doi: 10.1093/molbev/msab078).
  • Buggiotti L., Yudin N.S., Larkin D.M. Copy number variants in two northernmost cattle breeds are related to their adaptive phenotypes. Genes, 2022, 13: 1595 (doi: 10.3390/ genes13091595).
  • Lemay D.G., Lynn D.J., Martin W.F., Neville M.C., Casey T.M., Rincon G., Kriventseva E.V., Barris W.C., Hinrichs A.S., Molenaar A.J., Pollard K.S., Maqbool N.J., Singh K., Murney R., Zdobnov E.M., Tellam R.L., Medrano J.F., German J.B., Rijnkels M. The bovine lactation genome: insights into the evolution of mammalian milk. Genome Biol., 2009, 10(4): R43 (doi: 10.1186/gb-2009-10-4-r43).
  • Wickramasinghe S., Rincon G., Islas-Trejo A., Medrano J.F. Transcriptional profiling of bovine milk using RNA sequencing. BMC Genomics, 2012, 13: 45 (doi: 10.1186/1471-2164-13-45).
  • Hammami H., Rekik B., Bastin C., Soyeurt H., Bormann J., Stoll J, Gengler N. Environmental sensitivity for milk yield in Luxembourg and Tunisian Holsteins by herd management level. J. Dairy Sci., 2009, 92(9): 4604-4612 (doi: 10.3168/jds.2008-1513).
  • Cai W., Li C., Li J., Song J., Zhang S. Integrated small RNA sequencing, transcriptome and GWAS data reveal microRNA regulation in response to milk protein traits in Chinese Holstein cattle. Front. Genet., 2021, 12: 726706 (doi: 10.3389/fgene.2021.726706).
  • Dysin A.P., Barkova O.Y., Pozovnikova M.V. The role of microRNAs in the mammary gland development, health, and function of cattle, goats, and sheep. Noncoding RNA, 2021, 7(4): 78 (doi: 10.3390/ncrna7040078).
  • Ren W., Zhang Y., Dingkao R., Huang C., Ma X., Wu X., La Y., Chu M., Bao P., Guo X., Pei J., Yan P., Liang C. Comparative study of the expression profiles of miRNAs of milk-derived exosomes of yak and Jeryak. Animals (Basel), 2022, 12(22): 3189 (doi: 10.3390/ani12223189).
  • Deb R., Sengar G.S. Comparative miRNA signatures among Sahiwal and Frieswal cattle breeds during summer stress. Biotech., 2021, 11(2): 79 (doi: 10.1007/s13205-020-02608-4).
  • Braud M., Magee D.A., Park S.D., Sonstegard T.S., Waters S.M., MacHugh D.E., Spillane C. Genome-wide microRNA binding site variation between extinct wild aurochs and modern cattle identifies candidate microRNA-regulated domestication genes. Front. Genet., 2017, 8: 3 (doi: 10.3389/fgene.2017.00003).
  • Liu Y., Xu J., Chen M., Wang C., Li S. A unified STR profiling system across multiple species with whole genome sequencing data. BMC Bioinformatics, 2019, 20(Suppl. 24): 671 (doi: 10.1186/s12859-019-3246-y).
  • Cui W., Jin X., Guo Y., Chen C., Zhang W., Wang Y., Lan J., Zhu B. Development and vali-dation of a novel five-dye short tandem repeat panel for forensic identification of 11 species. Front. Genet., 2020, 11: 1005 (doi: 10.3389/fgene.2020.01005).
  • Forutan M., Ansari Mahyari S., Baes C., Melzer N., Schenkel F.S., Sargolzaei M. Inbreeding and runs of homozygosity before and after genomic selection in North American Holstein cattle. BMC Genomics, 2018, 19(1): 98 (doi: 10.1186/s12864-018-4453-z).
  • Häfliger I.M., Spengeler M., Seefried F.R., Drögemüller C. Four novel candidate causal variants for deficient homozygous haplotypes in Holstein cattle. Sci. Rep., 2022, 12(1): 5435 (doi: 10.1038/s41598-022-09403-6).
  • Liu X., Tian D., Li C., Tang B., Wang Z., Zhang R., Pan Y., Wang Y., Zou D., Zhang Z., Song S. GWAS Atlas: an updated knowledgebase integrating more curated associations in plants and animals. Nucleic Acids Res., 2023, 51(D1): D969-D976 (doi: 10.1093/nar/gkac924).
  • CNCB-NGDC Members and Partners. Database resources of the National Genomics Data Cen-ter, China National Center for Bioinformation in 2023. Nucleic Acids Res., 2023, 51(D1): D18-D28 (doi: 10.1093/nar/gkac1073).
  • Rigden D.J., Fernández X.M. The 2023 Nucleic Acids Research Database Issue and the online molecular biology database collection. Nucleic Acids Res., 2023, 51(D1): D1-D8 (doi: 10.1093/nar/gkac1186).
  • Flori L., Fritz S., Jaffrézic F., Boussaha M., Gut I., Heath S., Foulley J.L., Gautier M. The genome response to artificial selection: a case study in dairy cattle. PLoS ONE, 2009, 4(8): e6595 (doi: 10.1371/journal.pone.0006595).
  • Prakapenka D., Liang Z., Jiang J., Ma L., Da Y. A large-scale genome-wide association study of epistasis effects of production traits and daughter pregnancy rate in U.S. Holstein cattle. Genes (Basel), 2021, 12(7): 1089 (doi: 10.3390/genes12071089).
  • Dachs N., Upadhyay M., Hannemann E., Hauser A., Krebs S., Seichter D., Russ I., Gehrke L.J., Thaller G., Medugorac I. Quantitative trait locus for calving traits on Bos taurus autosome 18 in Holstein cattle is embedded in a complex genomic region. J. Dairy Sci., 2023, 106(3): 1925-1941 (doi: 10.3168/jds.2021-21625).
  • Huang Y., Li Y., Wang X., Yu J., Cai Y., Zheng Z., Li R., Zhang S., Chen N., Asadollahpour Nanaei H., Hanif Q., Chen Q., Fu W., Li C., Cao X., Zhou G., Liu S., He S., Li W., Chen Y., Chen H., Lei C., Liu M., Jiang Y. An atlas of CNV maps in cattle, goat and sheep. Sci. China Life Sci., 2021, 64(10): 1747-1764 (doi: 10.1007/s11427-020-1850-x).
  • Revay T., Quach A.T., Maignel L., Sullivan B., King W.A. Copy number variations in high and low fertility breeding boars. BMC Genomics, 2015, 16(1): 280 (doi: 10.1186/s12864-015-1473-9).
  • Fontanesi L., Martelli P.L., Scotti E., Russo V., Rogel-Gaillard C., Casadio R., Vernesi C. Ex-ploring copy number variation in the rabbit (Oryctolagus cuniculus) genome by array comparative genome hybridization. Genomics, 2012, 100(4): 245-251 (doi: 10.1016/j.ygeno.2012.07.001).
  • Davoudi P., Do D.N., Rathgeber B., Colombo S.M., Sargolzaei M., Plastow G., Wang Z., Karimi K., Hu G., Valipour S., Miar Y. Genome-wide detection of copy number variation in Amer-ican mink using whole-genome sequencing. BMC Genomics, 2022, 23(1): 649 (doi: 10.1186/s12864-022-08874-1).
  • Khlopova N.S., Glazko T.T., Glazko V.I. Constitutive and variable components of gene expression profiles in pig liver. Russ. J. Genet. Appl. Res., 2011, 1: 302-307 (doi: 10.1134/S2079059711040046).
  • Avvaru A.K., Sharma D., Verma A., Mishra R.K., Sowpati D.T. MSDB: a comprehensive, an-notated database of microsatellites. Nucleic Acids Res., 2020, 48(D1): D155-D159 (doi: 10.1093/nar/gkz886).
  • Zattera M.L., Bruschi D.P. Transposable elements as a source of novel repetitive DNA in the eukaryote genome. Cells, 2022, 11(21): 3373 (doi: 10.3390/cells11213373).
  • Gharesouran J., Hosseinzadeh H., Ghafouri-Fard S., Taheri M., Rezazadeh M. STRs: ancient architectures of the genome beyond the sequence. J. Mol. Neurosci., 2021, 71(12): 2441-2455 (doi: 10.1007/s12031-021-01850-6).
  • Verbiest M., Maksimov M., Jin Y., Anisimova M., Gymrek M., Bilgin Sonay T. Mutation and selection processes regulating short tandem repeats give rise to genetic and phenotypic diversity across species. J. Evol. Biol., 2023, 36(2): 321-336 (doi: 10.1111/jeb.14106).
  • Astolfi P., Bellizzi D., Sgaramella V. Frequency and coverage of trinucleotide repeats in eukary-otes. Gene, 2003, 317(1-2): 117-125 (doi: 10.1016/s0378-1119(03)00659-0).
  • Arslan A. Compendious survey of protein tandem repeats in inbred mouse strains. BMC Genom. Data, 2022, 23(1): 62 (doi: 10.1186/s12863-022-01079-1).
  • Wang X., Budowle B., Ge J. USAT: a bioinformatic toolkit to facilitate interpretation and comparative visualization of tandem repeat sequences. BMC Bioinformatics, 2022, 23(1): 497 (doi: 10.1186/s12859-022-05021-1).
  • Jafarian Z., Khamse S., Afshar H., Khorshid H.R.K., Delbari A., Ohadi M. Natural selection at the RASGEF1C (GGC) repeat in human and divergent genotypes in late-onset neurocognitive disorder. Sci. Rep., 2021, 11(1): 19235 (doi: 10.1038/s41598-021-98725-y).
  • Khamse S., Alizadeh S., Bernhart S.H., Afshar H., Delbari A., Ohadi M. A (GCC) repeat in SBF1 reveals a novel biological phenomenon in human and links to late onset neurocognitive disorder. Sci. Rep., 2022, 12(1): 15480 (doi: 10.1038/s41598-022-19878-y).
  • Khamse S., Jafarian Z., Bozorgmehr A., Tavakoli M., Afshar H., Keshavarz M., Moayedi R., Ohadi M. Novel implications of a strictly monomorphic (GCC) repeat in the human PRKACB gene. Sci. Rep., 2021, 11(1): 20629 (doi: 10.1038/s41598-021-99932-3).
  • Khamse S., Arabfard M., Salesi M., Behmard E., Jafarian Z., Afshar H., Khazaei M., Ohadi M. Predominant monomorphism of the RIT2 and GPM6B exceptionally long GA blocks in human and enriched divergent alleles in the disease compartment. Genetica, 2022, 150(1): 27-40 (doi: 10.1007/s10709-021-00143-5).
  • Cheng M., Xie D., Price M., Zhou C., Zhang X.. Comparative analysis of microsatellites in coding regions provides insights into the adaptability of the giant panda, polar bear and brown bear. Genetica, 2022, 150(6): 355-366 (doi: 10.1007/s10709-022-00173-7).
  • Song X., Yang T., Zhang X., Yuan Y., Yan X., Wei Y., Zhang J., Zhou C.. Comparison of the microsatellite distribution patterns in the genomes of Euarchontoglires at the taxonomic level. Front. Genet., 2021, 12: 622724 (doi: 10.3389/fgene.2021.622724).
  • Verbiest M.A., Delucchi M., Bilgin Sonay T., Anisimova M. Beyond microsatellite instability: intrinsic disorder as a potential link between protein short tandem repeats and cancer. Front. Bioinform., 2021, 1: 685844 (doi: 10.3389/fbinf.2021.685844).
  • Gymrek M., Willems T., Guilmatre A., Zeng H., Markus B., Georgiev S., Daly M.J., Price A.L., Pritchard J.K., Sharp A.J., Erlich Y. Abundant contribution of short tandem repeats to gene expression variation in humans. Nat. Genet., 2016, 48(1): 22-29 (doi: 10.1038/ng.3461).
  • Kinney N., Kang L., Bains H., Lawson E., Husain M., Husain K., Sandhu I., Shin Y., Carter J.K., Anandakrishnan R., Michalak P., Garner H. Ethnically biased microsatellites con-tribute to differential gene expression and glutathione metabolism in Africans and Europeans. PLoS ONE, 2021, 16(3): e0249148 (doi: 10.1371/journal.pone.0249148).
  • Basu S., Mackowiak S.D., Niskanen H., Knezevic D., Asimi V., Grosswendt S., Geertsema H., Ali S., Jerković I., Ewers H., Mundlos S., Meissner A., Ibrahim D.M., Hnisz D. Unblending of transcriptional condensates in human repeat expansion disease. Cell, 2020, 181(5): 1062-1079.e30 (doi: 10.1016/j.cell.2020.04.018).
  • Paul S., Dansithong W., Figueroa K.P., Scoles D.R., Pulst S.M. Staufen1 links RNA stress gran-ules and autophagy in a model of neurodegeneration. Nat. Commun., 2018, 9(1): 3648 (doi: 10.1038/s41467-018-06041-3).
  • Johnson S.L., Tsou W.L., Prifti M.V., Harris A.L., Todi S.V. A survey of protein interactions and posttranslational modifications that influence the polyglutamine diseases. Front. Mol. Neurosci., 2022, 15: 974167 (doi: 10.3389/fnmol.2022.974167).
  • Loureiro J.R., Oliveira C.L., Silveira I. Unstable repeat expansions in neurodegenerative diseases: nucleocytoplasmic transport emerges on the scene. Neurobiol. Aging, 2016, 39: 174-183 (doi: 10.1016/j.neurobiolaging.2015.12.007).
  • Loureiro J.R., Castro A.F., Figueiredo A.S., Silveira I. Molecular mechanisms in pentanucleotide repeat diseases. Cells, 2022, 11(2): 205 (doi: 10.3390/cells11020205).
  • Li Y., Lu Y., Polak U., Lin K., Shen J., Farmer J., Seyer L., Bhalla A.D., Rozwadowska N., Lynch D.R., Butler J.S., Napierala M. Expanded GAA repeats impede transcription elongation through the FXN gene and induce transcriptional silencing that is restricted to the FXN locus. Hum. Mol. Genet., 2015, 24(24): 6932-6943 (doi: 10.1093/hmg/ddv397).
  • Jain A., Vale R.D. RNA phase transitions in repeat expansion disorders. Nature, 2017, 546(7657): 243-247 (doi: 10.1038/nature22386).
  • Isiktas A.U., Eshov A., Yang S., Guo J.U. Systematic generation and imaging of tandem repeats reveal base-pairing properties that promote RNA aggregation. Cell Rep. Methods, 2022, 2(11): 100334 (doi: 10.1016/j.crmeth.2022.100334).
  • Murmann A.E., Patel M., Jeong S.Y., Bartom E.T., Jennifer Morton A., Peter M.E. The length of uninterrupted CAG repeats in stem regions of repeat disease associated hairpins determines the amount of short CAG oligonucleotides that are toxic to cells through RNA interference. Cell Death & Disease, 2022, 13(12): 1078 (doi: 10.1038/s41419-022-05494-1).
  • Nguyen L., Cleary J.D., Ranum L.P.W. Repeat-associated non-ATG translation: molecular mechanisms and contribution to neurological disease. Annu. Rev. Neurosci., 2019, 42: 227-247 (doi: 10.1146/annurev-neuro-070918-050405).
  • Li Y.C., Korol A.B., Fahima T., Beiles A., Nevo E. Microsatellites: genomic distribution, putative functions and mutational mechanisms: a review. Mol. Ecol., 2002, 11(12): 2453-2465 (doi: 10.1046/j.1365-294x.2002.01643.x).
  • Chistiakov D.A., Hellemans B., Volckaert F.A. Microsatellites and their genomic distribution, evolution, function and applications: a review with special reference to fsh genetics. Aquaculture, 2006, 255(1-4): 1-29 (doi: 10.1016/j.aquaculture.2005.11.031).
  • Sun J.X., Helgason A., Masson G., Ebenesersdóttir S.S., Li H., Mallick S., Gnerre S., Patter-son N., Kong A., Reich D., Stefansson K. A direct characterization of human mutation based on microsatellites. Nat. Genet., 2012, 44(10): 1161-1165 (doi: 10.1038/ng.2398).
  • Eckert K.A., Hile S.E. Every microsatellite is different: intrinsic DNA features dictate mutagenesis of common microsatellites present in the human genome. Mol. Carcinog., 2009, 48(4): 379-388 (doi: 10.1002/mc.20499).
  • Lynch M. Rate, molecular spectrum, and consequences of human mutation. Proc. Natl. Acad. Sci. USA, 2010, 107(3): 961-968 (doi: 10.1073/pnas.0912629107).
  • Rajaei M., Saxena A.S., Johnson L.M., Snyder M.C., Crombie T.A., Tanny R.E., Andersen E.C., Joyner-Matos J., Baer C.F. Mutability of mononucleotide repeats, not oxidative stress, explains the discrepancy between laboratory-accumulated mutations and the natural allele-frequency spec-trum in C. elegans. Genome Res., 2021, 31(9): 1602-1613 (doi: 10.1101/gr.275372.121).
  • Brand C.L., Levine M.T. Functional diversification of chromatin on rapid evolutionary time-scales. Annu. Rev. Genet., 2021, 55: 401-425 (doi: 10.1146/annurev-genet-071719-020301).
  • Murat P., Guilbaud G., Sale J.E. DNA polymerase stalling at structured DNA constrains the expansion of short tandem repeats. Genome Biol., 2020, 21(1): 209 (doi: 10.1186/s13059-020-02124-x)
  • Stein M., Hile S.E., Weissensteiner M.H., Lee M., Zhang S., Kejnovský E., Kejnovská I., Ma-kova K.D., Eckert K.A. Variation in G-quadruplex sequence and topology differentially im-pacts human DNA polymerase fidelity. DNA Repair (Amst), 2022, 119: 103402 (doi: 10.1016/j.dnarep.2022.103402).
  • Wheeler V.C., Dion V. Modifiers of CAG/CTG repeat instability: insights from mammalian models. Journal of Huntington’s Disease, 2021, 10(1): 123-148 (doi: 10.3233/JHD-200426).
  • Bansal A., Kaushik S., Kukreti S. Non-canonical DNA structures: diversity and disease associa-tion. Front. Genet., 2022, 13: 959258 (doi: 10.3389/fgene.2022.959258).
  • Georgakopoulos-Soares I., Chan C.S.Y., Ahituv N., Hemberg M. High-throughput techniques enable advances in the roles of DNA and RNA secondary structures in transcriptional and post-transcriptional gene regulation. Genome Biol., 2022, 23(1): 159 (doi: 10.1186/s13059-022-02727-6).
  • Kunkler C.N., Schiefelbein G.E., O’Leary N.J., McCown P.J., Brown J.A. A single natural RNA modification can destabilize a U•A-T-rich RNA•DNA-DNA triple helix. RNA, 2022, 28(9): 1172-1184 (doi: 10.1261/rna.079244.122).
  • Brown J.A. Unraveling the structure and biological functions of RNA triple helices. Wiley Inter-discip. Rev. RNA, 2020, 11(6): e1598 (doi: 10.1002/wrna.1598).
  • Bowater R.P., Bohálová N., Brázda V. Interaction of proteins with inverted repeats and cruciform structures in nucleic acids. Int. J. Mol. Sci., 2022, 23(11): 6171 (doi: 10.3390/ijms23116171).
  • Brázda V., Laister R.C., Jagelská E.B., Arrowsmith C. Cruciform structures are a common DNA feature important for regulating biological processes. BMC Mol. Biol., 2011, 12: 33 (doi: 10.1186/1471-2199-12-33).
  • Gao Z., Moorjani P., Sasani T.A., Pedersen B.S., Quinlan A.R., Jorde L.B., Amster G., Prze-worski M. Overlooked roles of DNA damage and maternal age in generating human germline mutations. Proc. Natl. Acad. Sci. USA, 2019, 116(19): 9491-9500 (doi: 10.1073/pnas.1901259116).
  • Mitra I., Huang B., Mousavi N., Ma N., Lamkin M., Yanicky R., Shleizer-Burko S., Lohmueller K.E., Gymrek M. Patterns of de novo tandem repeat mutations and their role in autism. Nature, 2021, 589(7841): 246-250 (doi: 10.1038/s41586-020-03078-7).
  • Hannan A.J. Tandem repeats mediating genetic plasticity in health and disease. Nat. Rev. Genet., 2018, 19(5): 286-298 (doi: 10.1038/nrg.2017.115).
  • Steely C.J., Watkins W.S., Baird L., Jorde L.B. The mutational dynamics of short tandem repeats in large, multigenerational families. Genome Biol., 2022, 23(1): 253 (doi: 10.1186/s13059-022-02818-4).
  • McGurk M.P., Barbash D.A. Double insertion of transposable elements provides a substrate for the evolution of satellite DNA. Genome Res., 2018, 28(5): 714-725 (doi: 10.1101/gr.231472.117).
  • Nishiyama E., Ohshima K. Cross-kingdom commonality of a novel insertion signature of RTE-related short retroposons. Genome Biol Evol., 2018, 10(6): 1471-1483 (doi: 10.1093/gbe/evy098).
  • Paço A., Freitas R., Vieira-da-Silva A. Conversion of DNA sequences: from a transposable element to a tandem repeat or to a gene. Genes (Basel), 2019, 10(12): 1014 (doi: 10.3390/genes10121014).
  • Richard G.F., Kerrest A., Dujon B. Comparative genomics and molecular dynamics of DNA repeats in eukaryotes. Microbiol. Mol. Biol. Rev., 2008, 72(4): 686-727 (doi: 10.1128/MMBR.00011-08).
  • López-Giráldez F., Andrés O., Domingo-Roura X., Bosch M. Analyses of carnivore microsatel-lites and their intimate association with tRNA-derived SINEs. BMC Genomics, 2006, 7: 269 (doi: 10.1186/1471-2164-7-269).
  • Duffy A.J., Coltman D.W., Wright J.M. Microsatellites at a common site in the second ORF of L1 elements in mammalian genomes. Mamm. Genome, 1996, 7(5): 386-387 (doi: 10.1007/s003359900111).
  • Lexa M., Jedlicka P., Vanat I., Cervenansky M., Kejnovsky E. TE-greedy-nester: structure-based detection of LTR retrotransposons and their nesting. Bioinformatics, 2020, 36(20): 4991-4999 (doi: 10.1093/bioinformatics/btaa632).
  • Глазко В.И., Косовский Г.Ю., Глазко Т.Т. Геномные источники разнообразия как драй-веры доместикации (обзор). Сельскохозяйственная биология, 2022, 57(5): 832-851 (doi: 10.15389/agrobiology.2022.5.832rus).
  • Ivancevic A.M., Kortschak R.D., Bertozzi T., Adelson D.L. Horizontal transfer of BovB and L1 retrotransposons in eukaryotes. Genome Biol., 2018, 19(1): 85 (doi: 10.1186/s13059-018-1456-7).
  • Tellam R.L., Lemay D.G., Van Tassell C.P., Lewin H.A., Worley K.C., Elsik C.G. Unlocking the bovine genome. BMC Genomics, 2009, 10: 193 (doi: 10.1186/1471-2164-10-193).
  • Kelly C.J., Chitko-McKown C.G., Chuong E.B. Ruminant-specific retrotransposons shape reg-ulatory evolution of bovine immunity. Genome Res., 2022, 32(8): 1474-1486 (doi: 10.1101/gr.276241.121).
  • Mirceta M., Shum N., Schmidt M.H.M., Pearson C.E. Fragile sites, chromosomal lesions, tan-dem repeats, and disease. Front. Genet., 2022, 13: 985975 (doi: 10.3389/fgene.2022.985975).
  • de Oliveira T.D., Bertocchi N.A., Kretschmer R., de Oliveira E.H.C., Cioffi M.D.B., Liehr T., de Freitas T.R.O. Genomic organization of microsatellites and LINE-1-like retrotransposons: evolutionary implications for Ctenomys minutus (Rodentia: Ctenomyidae) cytotypes. Animals, 2022, 12(16): 2091 (doi: 10.3390/ani12162091).
  • Kryshchuk I.A., Orlov V.N., Cherepanova E.V., Borisov Y.M. Unusual chromosomal polymor-phism of the common shrew, Sorex araneus L., in southern Belarus. Comparative Cytogenetics, 2021, 15(2): 159-169 (doi: 10.3897/CompCytogen.v15.i2.63084).
  • Воронцов Н.Н. Развитие эволюционных идей в биологии. М., 2004.
  • Ramírez D., Rodríguez M.E., Cross I., Arias-Pérez A., Merlo M.A., Anaya M., Portela-Bens S., Martínez P., Robles F., Ruiz-Rejón C., Rebordinos L. Integration of maps enables a cytogenomics analysis of the complete karyotype in Solea senegalensis. Int. J. Mol. Sci., 2022, 23(10): 5353 (doi: 10.3390/ijms23105353).
  • Mudd A.B., Bredeson J.V., Baum R., Hockemeyer D., Rokhsar D.S. Analysis of muntjac deer genome and chromatin architecture reveals rapid karyotype evolution. Commun. Biol., 2020, 3(1): 480 (doi: 10.1038/s42003-020-1096-9).
  • Yin Y., Fan H., Zhou B., Hu Y., Fan G., Wang J., Zhou F., Nie W., Zhang C., Liu L., Zhong Z., Zhu W., Liu G., Lin Z., Liu C., Zhou J., Huang G., Li Z., Yu J., Zhang Y., Yang Y., Zhuo B., Zhang B., Chang J., Qian H., Peng Y., Chen X., Chen L., Li Z., Zhou Q., Wang W., Wei F. Molecular mechanisms and topological consequences of drastic chromosomal rearrangements of muntjac deer. Nat. Commun., 2021, 12(1): 6858 (doi: 10.1038/s41467-021-27091-0).
  • Damas J., Corbo M., Kim J., Turner-Maier J., Farré M., Larkin D.M., Ryder O.A., Steiner C., Houck M.L., Hall S., Shiue L., Thomas S., Swale T., Daly M., Korlach J., Uliano-Silva M., Mazzoni C.J., Birren B.W., Genereux D.P., Johnson J., Lindblad-Toh K., Karlsson E.K., Nweeia M.T., Johnson R.N., Zoonomia Consortium, Lewin H.A. Evolution of the ancestral mammalian karyotype and syntenic regions. Proc. Natl. Acad. Sci. USA, 2022, 119(40): e2209139119 (doi: 10.1073/pnas.2209139119).
  • Waters P.D., Patel H.R., Ruiz-Herrera A., Álvarez-González L., Lister N.C., Simakov O., Ezaz T., Kaur P., Frere C., Grützner F., Georges A., Graves J.A.M. Microchromosomes are building blocks of bird, reptile, and mammal chromosomes. Proc. Natl. Acad. Sci. USA, 2021, 118(45): e2112494118 (doi: 10.1073/pnas.2112494118).
  • Fritz A.J., Sehgal N., Pliss A., Xu J., Berezney R. Chromosome territories and the global regu-lation of the genome. Genes Chromosomes Cancer, 2019, 58(7): 407-426 (doi: 10.1002/gcc.22732).
  • Deakin J.E., Potter S., O’Neill R., Ruiz-Herrera A., Cioffi M.B., Eldridge M.D.B., Fukui K., Marshall Graves J.A., Griffin D., Grutzner F., Kratochvíl L., Miura I., Rovatsos M., Srikul-nath K., Wapstra E., Ezaz T. Chromosomics: bridging the gap between genomes and chromo-somes. Genes (Basel), 2019, 10(8): 627 (doi: 10.3390/genes10080627).
  • Falk M., Feodorova Y., Naumova N., Imakaev M., Lajoie B.R., Leonhardt H., Joffe B., Dek-ker J., Fudenberg G., Solovei I., Mirny L.A. Heterochromatin drives compartmentalization of inverted and conventional nuclei. Nature, 2019, 570(7761): 395-399 (doi: 10.1038/s41586-019-1275-3).
  • Kumar R.P., Senthilkumar R., Singh V., Mishra R.K. Repeat performance: how do genome packaging and regulation depend on simple sequence repeats? Bioessays, 2010, 32(2): 165-174 (doi: 10.1002/bies.200900111).
  • van Kruistum H., Nijland R., Reznick D.N., Groenen M.A.M., Megens H.J., Pollux B.J.A. Parallel genomic changes drive repeated evolution of placentas in live-bearing fish. Mol. Biol. Evol., 2021, 38(6): 2627-2638 (doi: 10.1093/molbev/msab057).
  • Tang X., Li T., Liu S., Wisniewski J., Zheng Q., Rong Y., Lavis L.D., Wu C. Kinetic principles underlying pioneer function of GAGA transcription factor in live cells. Nat. Struct. Mol. Biol., 2022, 29(7): 665-676 (doi: 10.1038/s41594-022-00800-z).
  • Foster C.S.P., Van Dyke J.U., Thompson M.B., Smith N.M.A., Simpfendorfer C.A., Mur-phy C.R., Whittington C.M. Different genes are recruited during convergent evolution of preg-nancy and the placenta. Mol. Biol. Evol., 2022, 39(4): msac077 (doi: 10.1093/molbev/msac077).
  • Glazko V.I., Andreichenko I.N., Kovalchuk S.N., Glazko T.T., Kosovsky G.Yu. Candidate genes for control of cattle milk production traits. Russ. Agricult. Sci., 2016, 42: 458-464 (doi: 10.3103/S1068367416060082).
Еще
Статья обзорная