Drought stress in plants: effects and tolerance

Автор: Korgaonkar Shravani, Bhandari Rupali

Журнал: Журнал стресс-физиологии и биохимии @jspb

Статья в выпуске: 1 т.19, 2023 года.

Бесплатный доступ

Water is the catalyst of life and plays a profound role in plant physiological processes ranging from photosynthesis to intermolecular interactions through a hydrophobic bond. Because of the alterations due to changing environmental conditions, the plants are continuously exposed to a lack of optimum water availability, leading to impaired growth and disturbance in water transport and uptake. Drought is a prominent environmental factor that triggers various plant processes from morphological, physiological, biochemical, and molecular. Plants portray an array of drought tolerance mechanisms; these responses differ based on the type of plant species and may involve the functions of various stress genes. Reduction in plant growth and productivity due to stomatal closure affects photosynthetic efficiency, altering membrane integrity and several enzymes involved in adenosine triphosphate synthesis. Plants exhibit a range of drought tolerance mechanisms and undergo several phenological, morphological, physiological, biochemical, and molecular adaptations at the cellular, subcellular and whole plant levels. Also, drought stress induces the production of reactive oxygen species at the cellular level and is strongly protected by the increase in the enzymatic and non-enzymatic antioxidative system. This chapter/ review provides a glimpse of the effects and tolerance strategies adapted by the plant under drought stress.

Еще

Abiotic stress, drought, phytohormone, reactive oxygen species, antioxidants

Короткий адрес: https://sciup.org/143179380

IDR: 143179380

Список литературы Drought stress in plants: effects and tolerance

  • Abreu M., and Munné-Bosch, S. (2008). Salicylic acid may be involved in the regulation of droughtinduced leaf senescence in perennials: A case study in field-grown Salvia officinalis L. plants. Environ. Exp. Bot. 64, 105-112.
  • Agarwal P.K., Agarwal P., Reddy M.K. and Sopory S.K. (2006). Role of DREB transcription factors in abiotic and biotic stress tolerance in plants. Plant Cell Rep. 25, 1263-1274.
  • Akhtar I., and Nazir N. (2013). Effect of waterlogging and drought stress in plants. IJWRAE. 2, 34-40.
  • Akram M. (2011). Growth and yield components of wheat under water stress of different growth stages. Bangladesh J. Agric. Res. 36, 455-468.
  • Akram N.A., Waseem M., Ameen R. and Ashraf M. (2016). Trehalose pretreatment induces drought tolerance in radish (Raphanus sativus L.) plants: some key physio-biochemical traits. Acta Physiol. Plant. 38, 1-10.
  • Andrésa Z., Pérez-Hormaechea J., Leidia E.O., Schlücking K., Leonie S., McLachlanc D.H., Schumacher K., Hetherington A.M., Kudlab J., Cuberoa B. and Pardo J.M. (2014). Control of vacuolar dynamics and regulation of stomatal aperture by tonoplast potassium uptake. PNAS USA 111, 1806-1814.
  • Anithakumari A.M., Nataraja K.N., Visser R.G. and Van der Linden C.G. (2012). Genetic dissection of drought tolerance and recovery potential by quantitative trait locus mapping of a diploid potato population. Mol. Breed. 30,1413-1429.
  • Anjum S.A., Wang L.C., Farooq M., Hussain M., Xue L.L. and Zou C.M. (2011a). Brassinolide application improves the drought tolerance in maize through modulation of enzymatic antioxidants and leaf gas exchange. J Agron Crop Sci. 197,177-185.
  • Anjum S.A., Xie X.Y., Wang L.C., Saleem M.F., Man C. and Lei W. (2011b). Morphological, physiological and biochemical responses of plants to drought stress. Afr. J. Agric. Res. 6, 2026-2032.
  • Apel K., and Hirt H. (2004). Reactive oxygen species: metabolism, oxidative stress, and signal transduction. Annu. Rev. Plant Biol. 55, 373-399.
  • Arbona V., Manzi M., Ollas C.D. and Gómez-Cadenas A. (2013). Metabolomics as a tool to investigate abiotic stress tolerance in plants. Int. J. Mol. Sci. 14, 4885-4911.
  • Avramova V., Abd Elgawad H., Zhang Z., Fotschki B., Casadevall R., Vergauwen L. and Beemster G.T. (2015). Drought induces distinct growth response, protection, and recovery mechanisms in the maize leaf growth zone. Plant Physiol. 169, 1382-1396.
  • Bae H., Kim S.H., Kim M.S., Sicher R.C., Lary D., Strem M.D. and Bailey B.A. (2008). The drought response of Theobroma cacao (cacao) and the regulation of genes involved in polyamine biosynthesis by drought and other stresses. Plant Physiol. Biochem. 46,174-188.
  • Bhargava S. and Sawant K. (2013). Drought stress adaptation: metabolic adjustment and regulation of gene expression. Plant Breed. 132,21-32.
  • Blum A. (2005). Drought resistance, water-use efficiency, and yield potential—are they compatible, dissonant, or mutually exclusive?. Aust. J. Agric. Res. 56,1159-1168.
  • Bray E.A. (2007). Plant Response to Water‐deficit Stress. eLS. , John Wiley & Sons, Ltd
  • Castaneda R., Doan D., Newhouse D.L., Nguyen M., Uematsu H. and Azevedo J.P. (2016). Who are the poor in the developing world?. World Bank Policy Research Working Paper, (7844).
  • Chakraborty U. and Pradhan B. (2012). Oxidative stress in five wheat varieties (Triticum aestivum L.) exposed to water stress and study of their antioxidant enzyme defense system, water stress responsive metabolites and H2O2 accumulation. Braz. J. Plant Physiol. 24, 117-130.
  • Chen W., Provart, N.J., Glazebrook J., Katagiri F., Chang H.S., Eulgem T. and Zhu T. (2002). Expression profile matrix of Arabidopsis transcription factor genes suggests their putative functions in response to environmental stresses. The Plant Cell. 14, 559-574.
  • Chimenti C.A., Marcantonio M. and Hall A.J. (2006). Divergent selection for osmotic adjustment results in improved drought tolerance in maize (Zea mays L.) in both early growth and flowering phases. Field Crops Res. 95, 305-315.
  • Chugh V., Kaur N. and Gupta A. (2011). Evolution of oxidative stress tolerance in maize (Zea mays L.) seedlings in response to drought. Indian J Biochem Biophys. 48, 47-53.
  • Dai A. (2011). Drought under global warming: a review. Wiley Interdisciplinary Reviews: Clim Change 2, 45-65.
  • Deltoro V.I., Calatayud A., Gimeno C., Abadía A., and Barreno E. (1998). Changes in chlorophyll a fluorescence, photosynthetic CO2 assimilation and xanthophyll cycle interconversions during dehydration in desiccation-tolerant and intolerant liverworts. Planta. 207, 224-228.
  • Desclaux D., and Roumet P. (1996). Impact of drought stress on the phenology of two soybean (Glycine max L. Merr) cultivars. Field Crops Res. 46, 61-70.
  • Dev S.M. (2012). Small Farmers in India: Challenges and Opportunities. WP-2012-014, Indira Gandhi Institute of Development Research, Mumbai. http://www.igidr.ac.in/pdf/publication/WP-2012-014.pdf
  • Ding Y., Tao Y. and Zhu C. (2013). Emerging roles of microRNAs in the mediation of drought stress response in plants. J. Exp. Bot. 64, 3077-3086.
  • Farooq M., Aziz T., Basra S.M.A., Cheema M.A. and Rehman H. (2008). Chilling tolerance in hybrid maize induced by seed priming with salicylic acid. J Agron Crop Sci. 194, 161-168. -188.
  • Farooq M., Basra S.M.A., Wahid A., Ahmad N. and Saleem B.A. (2009b). Improving the drought tolerance in rice (Oryza sativa L.) by exogenous application of salicylic acid. J Agron Crop Sci. 195, 237-246.
  • Farooq M., Hussain M., Wahid A. and Siddique K.H.M. (2012). Drought stress in plants: an overview. In Plant responses to drought stress. 1-33.
  • Farooq M., Kobayashi N., Ito O., Wahid A. and Serraj R. (2010). Broader leaves result in better performance of indica rice under drought stress. J. Plant Physiol. 167, 1066-1075.
  • Farooq M., Wahid A. and Lee D.J. (2009c). Exogenously applied polyamines increase drought tolerance of rice by improving leaf water status, photosynthesis and membrane properties. Acta Physiol. Plant. 31, 937-945.
  • Farooq M., Wahid A., Kobayashi N.S.M.A., Fujita D.B.S.M.A. and Basra S.M.A. (2009a). Plant drought stress: effects, mechanisms and management. Sustain. Agric. 153.
  • Farooq M., Wahid A., Lee D.J., Ito O. and Siddique K.H. (2009d). Advances in drought resistance of rice. Crit Rev Plant Sci. 28, 199-217.
  • Giri J. (2011). Glycinebetaine and abiotic stress tolerance in plants. Plant Signal. Behav. 6, 1746-1751.
  • Goddijn O.J., Verwoerd T.C., Voogd E., Krutwagen R.W., De Graff P.T.H.M., Poels J. and Pen J. (1997). Inhibition of trehalase activity enhances trehalose accumulation in transgenic plants. Plant physiol. 113, 181-190.
  • Gong D.S., Xiong Y.C., Ma,B.L., Wang T.M., Ge J.P., Qin X.L. and Li F.M. (2010). Early activation of plasma membrane H+-ATPase and its relation to drought adaptation in two contrasting oat (Avena sativa L.) genotypes. Environ. Exp. Bot. 69, 1-8.
  • Ha S., Vankova R., Yamaguchi-Shinozaki K., Shinozaki K. and Tran L.S.P. (2012). Cytokinins: metabolism and function in plant adaptation to environmental stresses. Trends Plant Sci. 17, 172-179.
  • Hasanuzzaman M., Nahar K. and Fujita M. (2013). Plant response to salt stress and role of exogenous protectants to mitigate salt-induced damages. In Ecophysiology and responses of plants under salt stress. Springer, New York, NY 25-87.
  • Hasegawa P.M., Bressan R.A., Zhu J.K. and Bohnert H.J. (2000). Plant cellular and molecular responses to high salinity. Annu. Rev. Plant Biol. 51, 463-499.
  • Havaux M. (1998). Carotenoids as membrane stabilizers in chloroplasts. Trends Plant Sci. 3, 147-151.
  • Hirt H. and Shinozaki K. (2003). Plant responses to abiotic stress (Vol. 4). Springer Science & Business Media.
  • Horváth E., Pál M., Szalai G., Páldi E. and Janda T. (2007). Exogenous 4-hydroxybenzoic acid and salicylic acid modulate the effect of short-term drought and freezing stress on wheat plants. Biol. Plant. 51, 480-487.
  • Hussain M., Malik M.A., Farooq M., Ashraf M.Y. and Cheema M.A. (2008). Improving drought tolerance by exogenous application of glycinebetaine and salicylic acid in sunflower. J Agron Crop Sci. 194, 193-199.
  • Hussain M., Malik M.A., Farooq M., Khan M.B., Akram M. and Saleem M.F. (2009). Exogenous glycinebetaine and salicylic acid application improves water relations, allometry and quality of hybrid sunflower under water deficit conditions. J Agron Crop Sci. 195, 98-109.
  • Iordachescu M. and Imai R. (2008). Trehalose biosynthesis in response to abiotic stresses. J Integr Plant Biol. 50, 1223-1229.
  • Jaleel C. A., Gopi R., Sankar B., Gomathinayagam M., & Panneerselvam R. (2008). Differential responses in water use efficiency in two varieties of Catharanthus roseus under drought stress. Comptes Rendus Biologies, 331(1), 42-47.
  • Javot H. and Maurel C. (2002). The role of aquaporins in root water uptake. Ann. Bot. 90, 301-313.
  • Johansson I., Karlsson M., Shukla V.K., Chrispeels M.J., Larsson C. and Kjellbom P. (1998). Water transport activity of the plasma membrane aquaporin PM28A is regulated by phosphorylation. Plant Cell. 10, 451-459.
  • Joyce S.M., Cassells A.C. and Jain S.M. (2003). Stress and aberrant phenotypes in vitro culture. PCTOC. 74, 103-121.
  • Kaur G. and Asthir B. (2015). Proline: a key player in plant abiotic stress tolerance. Biol. Plant. 59, 609-619.
  • Kaur G. and Asthir B. (2017). Molecular responses to drought stress in plants. Biol. Plant. 61, 201-209.
  • Kavar T., Maras M., Kidrič M., Šuštar-Vozlič J. and Meglič V. (2008). Identification of genes involved in the response of leaves of Phaseolus vulgaris to drought stress. Mol. Breed. 21, 159-172.
  • Khan M. A., Iqbal M., Akram M., Ahmad M., Hassan M. W., & Jamil M. (2013). Recent advances in molecular tool development for drought tolerance breeding in cereal crops: a review. Zemdirbyste-Agriculture, 100(3), 325-334.
  • Khan M.A., Iqbal M., Jameel M., Nazeer W., Shakir S., Aslam M.T. and Iqbal B. (2011). Potentials of molecular based breeding to enhance drought tolerance in wheat (Triticum aestivum L.). Afr. J. Biotechnol. 10, 11340-11344.
  • Khan M.S., Ahmad D. and Khan M.A. (2015). Utilization of genes encoding osmoprotectants in transgenic plants for enhanced abiotic stress tolerance. Electron. J. Biotechnol. 18, 257-266.
  • Kiani S.P., Talia P., Maury P., Grieu P., Heinz R., Perrault A. and Sarrafi A. (2007). Genetic analysis of plant water status and osmotic adjustment in recombinant inbred lines of sunflower under two water treatments. Plant Sci. 172, 773-787.
  • Korgaonker S. and Bhandari R. (2021). Response of Oryza sativa L. To the interactive effect of drought and salicylic acid. J. stress physiol. biochem. 17, 95-104.
  • Kovtun Y., Chiu W.L., Tena G. and Sheen J. (2000). Functional analysis of oxidative stress-activated mitogen-activated protein kinase cascade in plants. PNAS USA 97, 2940-2945.
  • Kramer P.J. and Boyer J.S. (1995). Water relations of plants and soils. Academic press.
  • Labudda, M., & Azam, F. M. S. (2014). Glutathionedependent responses of plants to drought: a review. Acta Societatis Botanicorum Poloniae, 83(1). 3-12
  • Le Gall H., Philippe F., Domon J.M., Françoise G., Jérôme P. and Rayon C. (2015). Cell wall metabolism in response to abiotic stress. Plants. 4, 112-166.
  • Lee S.B., Kwon H.B., Kwon S.J., Park S.C., Jeong M.J., Han S.E. and Daniell H. (2003). Accumulation of trehalose within transgenic chloroplasts confers drought tolerance. Mol Breed. 11, 1-13.
  • Li H.W., Zang B.S., Deng X.W. and Wang X.P. (2011). Overexpression of the trehalose-6-phosphate synthase gene OsTPS1 enhances abiotic stress tolerance in rice. Planta. 234, 1007-1018.
  • Lisar S. Y., Motafakkerazad R., Hossain M. M., & Rahman I. M. (2012). Causes, effects and responses. Water stress, 25(1), 33.
  • Ludlow M.M. and Muchow R.C. (1990). A critical evaluation of traits for improving crop yields in water-limited environments. Adv. Agron. 43, 107-153.
  • Ma Q.Q., Wang W., Li Y.H., Li D.Q. and Zou Q. (2006). Alleviation of photoinhibition in drought-stressed wheat (Triticum aestivum) by foliar-applied glycinebetaine. J. Plant Physiol. 163, 165-175.
  • Mafakheri A., Siosemardeh A.F., Bahramnejad B., Struik P.C. and Sohrabi Y. (2010). Effect of drought stress on yield, proline and chlorophyll contents in three chickpea cultivars. Aust. J. Crop Sci. 4, 580-585.
  • Manivannan P., Jaleel C.A., Somasundaram R. and Panneerselvam R. (2008). Osmoregulation and antioxidant metabolism in drought-stressed Helianthus annuus under triadimefon drenching. C. R. Biol. 331, 418-425.
  • Marok M., Tarrago L., Ksas B., Henri P., Abrous-Belbachir O., Havaux M., Rey P. (2013). A droughtsensitive barley variety displays oxidative stress and strongly increased contents in low-molecular weight antioxidant compounds during water deficit compared to a tolerant variety. J. Plant Physiol. 170, 633-645.
  • Maurel C. and Chrispeels M.J. (2001). Aquaporins. A molecular entry into plant water relations. Plant physiol. 125, 135-138.
  • Mishra A.K. and Singh V.P. (2011). Drought modeling–A review. J. Hydrol. 403, 157-175.
  • Mishra V. and Cherkauer K.A. (2010). Retrospective droughts in the crop growing season: Implications to corn and soybean yield in the Midwestern United States. Agric For Meteorol. 150, 1030-1045.
  • Mittler R., Blumwald E. (2015). The roles of ROS and ABA in systemic acquired acclimation. Plant Cell. 27, 64-70.
  • Møller I.M., Jensen P.E. and Hansson A. (2007). Oxidative modifications to cellular components in plants. Annu. Rev. Plant Biol. 58, 459-481.
  • Nakashima K., Yamaguchi-Shinozaki K. and Shinozaki K. (2014). The transcriptional regulatory network in the drought response and its crosstalk in abiotic stress responses including drought, cold, and heat. Front. Plant Sci. 5, 170.
  • Nezhadahmadi A., Prodhan Z.H. and Faruq G. (2013). Drought tolerance in wheat. The Scientific World Journal. 2013, Article ID 610721
  • Nishiyama R., Watanabe Y., Leyva-Gonzalez M.A., Van Ha C., Fujita Y., Tanaka M. and Tran L.S.P. (2013). Arabidopsis AHP2, AHP3, and AHP5 histidine phosphotransfer proteins function as redundant negative regulators of drought stress response. PNAS USA. 110, 4840-4845.
  • Noodén L.D. (1988). The phenomenon of senescence and aging. Senescence and aging in plants. 2-50.
  • Nuccio M.L., Wu J., Mowers R., Zhou H.P., Meghji M., Primavesi L.F., Paul M.J., Chen X., Gao Y., Haque E., Basu S.S. and Lagrimini L.M (2015). Expression of trehalose-6- phosphate phosphatase in maize ears improves yield in well-watered and drought conditions. Nat. Biotechnol. 33, 862- 869.
  • Okçu G., Kaya M.D. and Atak M. (2005). Effects of salt and drought stresses on germination and seedling growth of pea (Pisum sativum L.). Turk J Agric For. 29, 237-242.
  • Örvar B.L. and Ellis B.E. (1997). Transgenic tobacco plants expressing antisense RNA for cytosolic ascorbate peroxidase show increased susceptibility to ozone injury. Plant J. 11, 1297-1305.
  • Osakabe Y., Osakabe K., Shinozaki K. and Tran L.S.P. (2014). Response of plants to water stress. Front. Plant Sci. 5, 86.
  • Pan Y., Wu L.J. and Yu Z.L. (2006). Effect of salt and drought stress on antioxidant enzymes activities and SOD isoenzymes of liquorice (Glycyrrhiza uralensis Fisch). Plant Growth Regul. 49, 157-165.
  • Pastori G., Foyer C.H. and Mullineaux P. (2000). Low temperature‐induced changes in the distribution of H2O2 and antioxidants between the bundle sheath and mesophyll cells of maize leaves. J. Exp. Bot. 51, 107-113.
  • Pérez-Pérez J.G., Robles J.M., Tovar J.C. and Botia P. (2009). Response to drought and salt stress of lemon 'Fino 49'under field conditions: water relations, osmotic adjustment and gas exchange. Sci. Hortic. 122, 83-90.
  • Potopova V., Boroneanţ C., Boincean B. and Soukup J. (2016). Impact of agricultural drought on main crop yields in the Republic of Moldova. Int. J. Climatol. 36, 2063-2082.
  • Praba M.L., Cairns J.E., Babu R.C. and Lafitte H.R. (2009). Identification of physiological traits underlying cultivar differences in drought tolerance in rice and wheat. J Agron Crop Sci. 195, 30-46.
  • Quan R., Shang M., Zhang H., Zhao Y. and Zhang J. (2004). Improved chilling tolerance by transformation with betA gene for the enhancement of glycinebetaine synthesis in maize. Plant Sci. 166, 141-149.
  • Rao K.M., Raghavendra A.S. and Reddy K.J. (Eds.). (2006). Physiology and molecular biology of stress tolerance in plants. Springer Science & Business Media.
  • Sapeta H., Costa J.M., Lourenco T., Maroco J., Van der Linde P. and Oliveira M.M. (2013). Drought stress response in Jatropha curcas: growth and physiology. Environ. Exp. Bot. 85, 76-84.
  • Seki M., Kamei A., Yamaguchi-Shinozaki K. and Shinozaki K. (2003). Molecular responses to drought, salinity and frost: common and different paths for plant protection. Curr. Opin. Biotechnol. 14, 194-199.
  • Senaratna T., Touchell D., Bunn E. and Dixon K. (2000). Acetyl salicylic acid (Aspirin) and salicylic acid induce multiple stress tolerance in bean and tomato plants. Plant Growth Regul. 30, 157-161.
  • Serraj R. and Sinclair T.R. (2002). Osmolyte accumulation: can it really help increase crop yield under drought conditions?. Plant Cell Environ. 25, 333-341.
  • Shatil-Cohen A., Attia Z. and Moshelion M. (2011). Bundle-sheath cell regulation of xylem-mesophyll water transport via aquaporins under drought stress: a target of xylem-borne ABA? Plant J. 67, 72-80.
  • Singh B. and Usha K. (2003). Salicylic acid induced physiological and biochemical changes in wheat seedlings under water stress. Plant Growth Regul. 39, 137-141.
  • Subbarao G.V., Nam N.H., Chauhan Y.S. and Johansen C. (2000). Osmotic adjustment, water relations and carbohydrate remobilization in pigeonpea under water deficits. J. Plant Physiol. 157, 651-659.
  • Taiz L. and Zeiger E. (2010). Plant physiology. 5th edn (Sinauer Associates: Sunderland, MA, USA).
  • Tournaire-Roux C., Sutka M., Javot H., Gout E., Gerbeau P., Luu D.T. and Maurel C. (2003). Cytosolic pH regulates root water transport during anoxic stress through gating of aquaporins. Nature. 425, 393-397.
  • Turner N.C., Wright G.C. and Siddique K.H.M. (2001). Adaptation of grain legumes (pulses) to waterlimited environments. Adv. Agron. 71, 193-231.
  • Tyerman S.D., Niemietz C.M. and Bramley H. (2002). Plant aquaporins: multifunctional water and solute channels with expanding roles. Plant Cell Environ. 25, 173-194.
  • Verbruggen N. and Hermans C. (2008). Proline accumulation in plants: a review. Amino Acids. 35, 753-759.
  • Verslues P.E. and Sharma S. (2010). Proline metabolism and its implications for plantenvironment interaction. Arabidopsis Book. 8, 140.
  • Wahid A. (2007). Physiological implications of metabolite biosynthesis for net assimilation and heat-stress tolerance of sugarcane (Saccharum officinarum) sprouts. J. Plant Res. 120, 219-228.
  • Wahid A. and Close T.J. (2007). Expression of dehydrins under heat stress and their relationship with water relations of sugarcane leaves. Biol. Plant. 51, 104-109.
  • Wahid A., Gelani S., Ashraf M., & Foolad M. R. (2007). Heat tolerance in plants: an overview. Environmental and experimental botany, 61(3), 199-223.
  • Wingler A. (2002). The function of trehalose biosynthesis in plants. Phytochemistry. 60, 437-440.
  • Xoconostle-Cazares B., Ramirez-Ortega F.A., Flores-Elenes L. and Ruiz-Medrano R. (2010). Drought tolerance in crop plants. Am. J. Plant Physiol. 5, 241-256.
  • Yuan G.F., Jia C.G., Li Z., Sun B., Zhang L.P., Liu N. and Wang Q.M. (2010). Effect of brassinosteroids on drought resistance and abscisic acid concentration in tomato under water stress. Sci. Hortic. 126:103-108.
  • Zhu J.K. (2002). Salt and drought stress signal transduction in plants. Annu. Rev. Plant Biol. 53, 247-273.
Еще
Статья обзорная