Two fast methods for finding the greatest common divisor
Автор: Amer I.F., Al Khalidi A.M.
Рубрика: Информатика и вычислительная техника
Статья в выпуске: 1, 2021 года.
Бесплатный доступ
New high-performance algorithms for finding the greatest common divisor (GCD), developed on the basis of the Babylonian calculus and the Chrestenson basis, are considered. Estimates of the computational complexity of the basic operations of the improved GCD search algorithm in the Chrestenson basis are made. The results of a comparative analysis of the improved algorithm for finding GCD in the Chrestenson basis with the standard Euclidean algorithm in the Babylonian number system and the algorithm for searching for GCD using the Chrestenson basis are presented.
Greatest common divisor, number theory, euclidean algorithm, computational complexity, method of finding
Короткий адрес: https://sciup.org/148321541
IDR: 148321541 | DOI: 10.25586/RNU.V9187.21.01.P.150