Dynamic Data Aggregation Model for Social Internet of Things Devices: Exploring the Static and Mobile Nature
Автор: Meghana J., Hanumanthappa J., S.P. Shiva Prakash, Kirill Krinkin
Журнал: International Journal of Information Engineering and Electronic Business @ijieeb
Статья в выпуске: 5 vol.16, 2024 года.
Бесплатный доступ
The increasing ubiquity of Social Internet of Things (SIoT) devices necessitates innovative data aggregation techniques to distill meaningful insights from diverse sources. This study introduces a Dynamic Data Aggregation Model for SIoT devices. The model aims to amalgamate static and mobile device data, employing Density-Based Spatial Clustering of Applications with Noise (DBSCAN) for spatial clustering and Recurrent Neural Networks (RNN) for predicting mobile device movement patterns. The purpose is to offer a holistic approach to predictive analytics in the SIoT domain by seamlessly integrating these methodologies. The model begins with data preprocessing, ensuring data quality. It then applies DBSCAN for spatial clustering, enabling a comprehensive understanding of spatial relationships between devices. Simultaneously, RNNs are used for predictive modeling, specifically in forecasting mobile device movement patterns. The integration of DBSCAN clustering and RNNs forms the model’s innovative core, providing a unified solution for dynamic data aggregation. Comprehensive testing demonstrates the model’s notable accuracy in predicting mobile device movement patterns. By combining the spatial clustering capabilities of DBSCAN with the predictive power of RNNs, the model effectively unifies static and mobile data, advancing predictive analytics in the SIoT context. The proposed model yielded average values of 0.14604 (Mean Squared Error), 2.678385 (Mean Absolute Error), 0.307154 (Root Mean Squared Error), and 1.342317 (Mean Absolute Percentage Error), respectively. The Dynamic Data Aggregation Model proves its efficacy in addressing SIoT challenges. The integration of DBSCAN clustering and RNNs offers a versatile framework for dynamic data analysis, contributing significantly to predictive analytics in SIoT contexts.
DBSCAN, RNN, Data Aggregation, Social Internet of Things
Короткий адрес: https://sciup.org/15019435
IDR: 15019435 | DOI: 10.5815/ijieeb.2024.05.06
Список литературы Dynamic Data Aggregation Model for Social Internet of Things Devices: Exploring the Static and Mobile Nature
- Quentin Bramas, Sebastien Tixeuil. The complexity of data aggregation in static and dynamic wireless sensor net- works. Information and Computation. 2017; 255:369-383. doi:10.1016/j.ic.2016.12.004
- Al-kahtani, Mohammed, Karim, Lutful. Dynamic Data Aggregation Approach for Sensor-Based Big Data. International Journal of Advanced Computer Science and Applications. 2018; 9:234-274. doi:10.14569/IJACSA.2018.090710
- J. W. Raymond, T. O. Olwal and A. M. Kurien. Cooperative Communications in Machine to Machine (M2M): Solutions, Challenges and Future Work. IEEE Access. 2018; 6:9750-9766. doi:10.1109/ACCESS.2018.2807583
- Tabinda Salman, Waheed UR Rehman, Xiaoffng Tao.Data Aggregation in Massive Machine Type Communication: Challenges and Solution. IEEE Access. 2019; 7: 41921-41946. doi:10..1109/ACCESS.2019.2906880
- Chang-Sik Choi; Franc¸ois Baccelli. Spatial and Temporal Analysis of Direct Communications from Static Devices to Mobile Vehicles.IEEE Transactions on Wireless Communications. 2019; 18:5128-5140. doi:10.1109/TWC.2019.2933393
- Ogudo, K.A.; Muwawa Jean Nestor, D.; Ibrahim Khalaf, O.; Daei Kasmaei, H. A Device Performance and Data Analytics Concept for Smartphones IoT Services and Machine-Type Communication in Cellular Networks. Multi- disciplinary Digital Publishing Institute. 2019; 11(4). doi:10.3390/sym11040593
- Juan Manuel Rodriguez, Alejandro Zunino, Antonela Tommasel, Cristian Mateos. Recurrent Neural Networks for Predicting Mobile Device State. Computer Simulation. 2019; 13: 1028-1043. doi:10.4018/978-1-5225-2255- 3.ch577
- Tae-Won Ban, Woongsup Lee. A Deep Learning Based Transmission Algorithm for Mobile Device-to-Device Net- works. Multidisciplinary Digital Publishing Institute. 2019; 8(11):1361. doi:10.3390/electronics8111361
- Tianfu Wang, Yun Luo, Jing Tian. NS-DBSCAN: A density-based clustering algorithm in network space. Geo Information. 2019; 8:218-298. doi:10.3390/ijgi8050218
- Yuelei Xiao and Qing Nian. Vehicle Location Prediction Based on Spatiotemporal Feature Transformation and Hy- brid LSTM Neural Network. Information. 2020; 11:84-89. doi:10.3390/info11020084
- Nama, Mahima, Nath, Ankita, Bechra, Nancy, Bhatia, Jitendra, Tanwar, Sudeep,Chaturvedi, Manish, Sadoun, Balqies. Machine Learning-based Traffic Scheduling Techniques for Intelligent Transportation System: Opportu- nities and Challenges. International Journal of Communication System. 2021; 34(3). doi:10.1002/dac.4814
- Kim T, Park J, Lee J, Park J. Predicting Human Motion Signals Using Modern Deep Learning Techniques and Smartphone Sensors. Sensors. 2021; 21:8270-8279. doi:10.3390/s21248270
- Choi, Changlock. MDST-DBSCAN: A Density-Based Clustering Method for Multidimensional Spatiotemporal Data. International Journal of Geo-Information. 2021; 10: 391-401. doi:10.3390/ijgi10060391
- Mazin Hameed, Ali Idrees. Distributed DBSCAN Protocol for Energy Saving in IoT Networks. In: Interna- tional Conference on Communication, Computing and Electronics Systems, 26 April 2021. Springer. 2021. doi:10.1007/978-981-33-4909-42
- Yasser Nabil, Hesham Elsawy, Suhail Al-Dharrab, Hassan Mostafa, Hussein Attia. Data Aggregation in Regular Large-Scale IoT Network: Granuality, Reliability, and Delay Treadeoffs. Internet of Things. 2022; 9: 17767-17784. doi:10.1109/JIOT.2022.3160970
- Kang Tan, Duncan Bremner, Julien Le Kernec, Lei Zhang, Muhammad Imran. Machine learning in vehicu- lar networking: An overview. International Journal of Digital Communications and Networks. 2022; 8:18-24. doi:10.1016/j.dcan.2021.10.007
- Lucy Dash, Binod Kumar Pattanayak, Sambit Kumar Mishra, Kshira Sagar Sahoo, Noor Zaman Jhanjhi, Mohammed Baz, Mehedi Masud. A Data Aggregation Approach Exploiting Spatial and Temporal Correlation among Sensor Data in Wireless Sensor Networks. Electronics. 2022; 11:989-995. doi:10.3390/electronics11070989
- Khattak, Hasan Ali, Rahmani, Mohammad Khalid Imam, Khan, Fazlullah, Muzaffar, Abdul Wahab, Jan, Mian Ahmad. Internet of Things-Enabled Optimal Data Aggregation Approach for the Intelligent Surveillance Systems. Mobile Information Systems. 2022; 2022: 1574-017X. doi:10.1155/2022/4681583
- Seo Jin Chang, Irvine Irvine, Boyeon Kim, Yunseok Chang. Delay-Based Dynamic Clustering Method for the IoT Cluster. In: 2022 IEEE International Conference on Computational Science and Computational Intelligence (CSCI), 2022. IEEE. 2022. doi:10.1109/CSCI58124.2022.00270
- Sakorn Mekruksavanich , Anuchit Jitpattanakul. RNN-based deep learning for physical activity recognition using smartwatch sensors: A case study of simple and complex activity recognition. Mathematical Biosciences and Engi- neering. 2022; 19:5671-5698. doi:10.3934/mbe.2022265
- Dae-Young Kim and Seokhoon Kim. Data Aggregation-based Transmission Method in Ultra-Dense Wireless Net- works. Intelligent Automation and Soft Computing. 2022; 35: 727-737. doi:10.32604/iasc.2023.027563
- Erskine SK, Chi H, Elleithy A. SDAA: Secure Data Aggregation and Authentication Using Multiple Sinks in Cluster-Based Underwater Vehicular Wireless Sensor Network. Sensors. 2023; 23: 5270-5289. doi:10.3390/s23115270
- Xiaoya An, Ziming Wang, Ding Wang, Song Liu, Cheng Jin, Xinpeng Xu, Jianjun Cao. STRP-DBSCAN: A Par- allel DBSCAN Algorithm Based on Spatial-Temporal Random Partitioning for Clustering Trajectory Data. Applied Sciences. 2023; 13:11-122. doi:10.3390/app132011122.