Dynamic flow parameters in natural curvilinear coordinates for a current line in a rotating channel

Автор: V.V. Chernenko, D.V. Chernenko, M.I. Tolstopyatov, E.S. Manokhina, E.V. Fal’kova

Журнал: Siberian Aerospace Journal @vestnik-sibsau-en

Рубрика: Aviation and spacecraft engineering

Статья в выпуске: 4 vol.25, 2024 года.

Бесплатный доступ

A special interest in the topic of mathematical analysis of the flow of heat transfer processes is determined by the scientific significance and practical application in the development, design and production of rocket and space vehicles and installations. Substantiation of the developed techniques and modeling of the data obtained during the experiment using 3D process technologies gives an advantage. The accuracy and reliability of the calculation results play a key role in ensuring the safety and reliability of rocket and space systems. Regular verification and verification of the results are also necessary to ensure a high degree of reliability and safety. The comprehensive analysis of the fluid flow in the inter-vane channel of the impeller of a low-flow centrifugal pump presented in the article, with the construction of the energy characteristics of the impeller, can be used to clarify the number of vanes. The developed calculation method consists of four parts: firstly, an expression is obtained to determine the projection of the pressure gradient on the longitudinal axis φ, secondly, an expression is obtained to determine the projection of the pressure gradient on the transverse axis ψ, thirdly, the derivative of the longitudinal velocity in the transverse direction is determined, and fourthly, the results are presented numerical and experimental visualization: the power balance, the dependence of the pressure and the coefficient of influence of a finite number of vanes on the flow rate of a low-flow centrifugal pump. Based on the results of theoretical research, an algorithm and a calculation program were developed that allows calculating local values. The considered approach is confirmed by verification of the results of mathematical modeling by graphical visualization of the flow and measurement of the power balance of a low-flow centrifugal pump. The obtained expressions for pressure gradient projections, determination of the derivative of the longitudinal velocity and experimental visualization play an important role in the calculation and analysis of the operation of centrifugal pumps. However, there is a need for further elaboration of the method to bring it to a form that allows calculating the three-dimensional flow of the working fluid in an arbitrary channel.

Еще

Centrifugal pump, impeller, head, optimization, speed gradient, pressure gradient, power balance

Короткий адрес: https://sciup.org/148329761

IDR: 148329761   |   DOI: 10.31772/2712-8970-2024-25-4-493-506

Список литературы Dynamic flow parameters in natural curvilinear coordinates for a current line in a rotating channel

  • Filin N. A., Mkrtchyan M. K. [Little-known facts of the history of the creation of a turbopump unit in a liquid-propellant rocket engine]. Vestnik Mosk. aviats. in-ta. 2021, Vol. 28, No. 13, P. 63–73 (In Russ.).
  • Nazarov V. P., Yatsunenko V. G., Kolomentsev A. I. [Structural and technological factors of stability of the energy parameters of turbopump units of rocket engines]. Vestnik Mosk. aviats. in-ta. 2014, Vol. 21, No. 5, P. 101–105 (In Russ.).
  • Zuev A. A., Arngold A. A., Danilov N. A. [Power balance of centrifugal pumps for power systems of aircraft and spacecraft]. Reshetnevskiye chteniya. 2020, P. 132–133 (In Russ.).
  • Nazarov V. P., Chernenko V. V., Chernenko D. V. [Flow model in the impeller of a centrifugal pump]. Siberian Aerospace Journal. 2021, Vol. 22, No. 3, P. 494–503 (In Russ.).
  • Zuev A. A., Arngold A. A., Tolstopyatov M. I. Flow with heat transfer in a rotating cavity. IOP Conference Series: Materials Science and Engineering: International Workshop Advanced Technologies in Material Science, Mechanical and Automation Engineering – MIP: Engineering – 2019. 2019. P. 22026. DOI: 10.1088/1757-899X/537/2/022026.
  • Korochinsky V. V. Razrabotka trubchatyh napravlyayushchih apparatov v otvodah vysokooborotnyh centrobezhnyh nasosov s cel'yu snizheniya vibracii i uvelicheniya resursa raboty. Diss. Kand.]. [Development of tubular guide vanes in the outlets of high-speed centrifugal pumps in order to reduce vibration and increase the service life. Diss. Cand.]. Moscow, 119 p.
  • Kishkin A. A., Zuev A. A., Delkov A. V., Shevchenko Y. N. [An analytical approach to the study of boundary layer pulse equations during flow in the interscapular channel of gas turbines]. Vestnik Mosk. aviats. in-ta. 2021, Vol. 28, No. 1, P. 45–60 (In Russ.).
  • Laptev A. G., Farakhov T. M., Lapteva E. A. Dissipative mathematical model of heat transfer in channels with process intensifiers. IOP Conference Series: Materials Science and Engineering. 2020, P. 52045. DOI: 10.1088/1757-899X/919/5/052045.
  • Zhuikov D. A., Zuev A. A., Nazarov V. P. Hydraulic losses in the initial section of a flow parts of at aggregates of liquid rocket engines. IOP Conference Series: Materials Science and Engineering. 2020, P. 22034. DOI: 10.1088/1757-899X/862/2/022034.
  • Chernenko D. V. Gidrodinamika centrobezhnyh lopatochnyh nagnetateley energosilovyh ustanovok letatel'nyh apparatov. Diss. Kand. [Hydrodynamics of centrifugal vane superchargers of power plants of aircraft. Diss. Cand.]. Krasnoyarsk, SibGAU, 167 p.
  • Chernenko V. V., Chernenko D. V. Flow model in the impeller of a centrifugal pump. IOP Conference Series: Materials Science and Engineering (MIP-III 2021). 2021, Vol. 1155, P. 012065. DOI: 10.1088/1757-899X/1155/1 /012065.
  • Kutateladze S. S., Leontiev A. I. Teplomassoobmen i trenie v turbulentnom pogranichnom sloe [Heat and Mass Transfer and Friction in a Turbulent Boundary Layer]. Moscow, Energoizdat Publ., 1985, 320 p.
  • Schlichting G. Teoriya pogranichnogo sloya [Theory of the boundary layer]. Moscow, Nauka Publ., 1974, 712 p.
  • Loitsyansky L. G. Laminarnyy pogranichnyy sloy [Laminar boundary layer]. Moscow, Fizmatgiz Publ., 1692, 478 p.
  • Loitsyansky L. G. Mekhanika zhidkosti i gaza [Mechanics of liquid and gas]. Moscow, Nauka Publ., 1970, 940 p.
  • Laptev A. G., Farahov T. M. [Mathematical models and calculation of hydrodynamic characteristics of the boundary layer]. Nauchnyy zhurnal KuBGAU. 2012, No. 08 (82). P. 710–744 (In Russ.).
  • Laptev A. G. Modeli pogranichnogo sloya i raschet teplo-massoobmennyh processov [Boundary layer models and calculation of heat and mass transfer processes]. Kazan, 2007, 500 p.
  • Laptev A. G. Basharov M. M., Runov D. M. [Determination of heat transfer coefficients in channels with intensification elements]. Mezhdunar. zhurnal priklad. i fundamental. issled-iy. 2015, No. 3, P. 311–316 (In Russ.).
  • Lapteva E. A., Farkhatov T. M. Matematicheskie modeli i raschet teplo-massoobmennyh harakteristik apparatov [Mathematical models and calculation of heat and mass transfer characteristics of apparatuses]. Kazan, Fatherland Publ., 2013, 182 p.
  • Shkarbul S. N. Issledovanie prostranstvennyh techenij vyazkoj zhidkosti v rabochih kolesah centrobezhnyh kompressorov. Dr. Diss. [Investigation of spatial flows of viscous liquid in impellers of centrifugal compressors. Dr. Diss.]. Leningrad, 1973, 398 p.
  • Elin V. I., Soldatov K. N., Sokolovsky S. M. Nasosy i kompressory [Pumps and compressors]. Moscow, 1960, 373 p.
  • Ovsyanikov B. V., Borovsky B. I. Teoriya i raschet agregatov pitaniya zhidkostnyh raketnyh dvigateley [Theory and calculation of power units for liquid-propellant rocket engines. 3rd ed., revised. and additional]. Moscow, Mashinostroenie Publ., 1986, 376 p.
Еще
Статья научная