Dynamics of the flow in the sections of the elements of the supply path of the turbopump unit of the LRE
Автор: Arngold A.A., Zuev A.A., Tolstopyatov M.I., Dubynin P.A.
Журнал: Siberian Aerospace Journal @vestnik-sibsau-en
Рубрика: Aviation and spacecraft engineering
Статья в выпуске: 2 vol.23, 2022 года.
Бесплатный доступ
The paper investigates areas of dynamically unstabilized flows characteristic of the elements of the flowing parts of turbopump units of liquid propellant rocket engines; studies of rectangular variable cross-section, cylindrical variable cross-section, rotational currents in cavities with fixed walls, fixed and rotat-ing walls. The specific elements include: delivery and discharge units, side cavities between the rotor and the stator, cavities of hydrodynamic seals and elements of the interblade channel of centrifugal pumps and gas turbines. Due to the specific features of the operating and design parameters, the initial components of dynami-cally unstabilized flows are predominant in the flow parts of the delivery units. These areas have a signifi-cant impact on the energy parameters of the assembly and affect the heat exchange processes and, as a result, the reliability of structural elements. In the specific elements of the feed systems, both laminar and turbulent modes of the flow of the working medium are realized. Using the methods of three-dimensional boundary layer theory, specific thicknesses of boundary layer such as thickness of dynamic boundary layer, displacement thickness and momentum loss thickness are determined. Dependences for determination of flow core velocities, necessary for evaluation of losses due to the length of specific sections, are obtained. Proper selection of friction laws and velocities profiles in the boundary layer and consideration of initial section is necessary for the purposes of reliable determina-tion of energy parameters. Obtained dependences consider velocity distribution profile in the boundary layer on specific sections of laminar and turbulent regimes cases.
Section of dynamically non-stabilized flow, velocity, losses along the length, three-dimensional boundary layer
Короткий адрес: https://sciup.org/148329624
IDR: 148329624 | DOI: 10.31772/2712-8970-2022-23-2-242-261
Список литературы Dynamics of the flow in the sections of the elements of the supply path of the turbopump unit of the LRE
- Kiselev F. D. [Fracture diagnostics and operational workability evaluation of working turbine blades of aircraft engine]. Vestnik Moskovskogo aviatsionnogo institute. 2019, Vol. 26, No. 4, P. 108–122.
- Grigorʼev V. A., Zagrebelʼnyi A. O., Kalabuhov D. S. [Updating parametric gas turbine engine model with free turbine for helicopters]. Vestnik Moskovskogo aviatsionnogo institute. 2019, Vol. 26, No. 3, P. 137–143.
- Mileshin V. I., Semenkin V. G. [Computational study of reynolds number effect on the typical first stage of a high-pressure compressor]. Vestnik Moskovskogo aviatsionnogo institute. 2018, Vol. 25, No 2, P. 86–98.
- Ilinkov A. V., Gabdrakhmanov R. R., Takmovtsev V. V., Shchukin A. V. [Influence of centrif-ugal mass forces on heat transfer during air flow around a concave surface with transverse protru-sions]. Vestnik Moskovskogo aviatsionnogo institute. 2018, Vol. 25, No. 1, P. 39–48.
- Gorelov Yu. G., Strokach E. A. [Analysis of regularities of calculation of the heat transfer coef-ficient from gas at the inlet edges of the nozzle blades of high-pressure turbines]. Vestnik Mos-kovskogo aviatsionnogo institute. 2016, Vol. 23, No. 1, P. 80–85.
- Shcherbakov M. A., Vorobyev D. A., Maslakov S. A., Ravikovich Yu. A. [Determination of the heat transfer coefficient on the turbine blade at off-design operating conditions]. Vestnik Mos-kovskogo aviatsionnogo institute. 2013, Vol. 20, No. 3, P. 95–103.
- Kraeva E. M. [Energy parameters of high-speed pumps of low flow]. Vestnik Moskovskogo avi-atsionnogo institute. 2011, Vol. 18, No. 3, P. 104–109.
- Zuev A. A., Nazarov V. P., Arngold A. A., Petrov I. M. [Disk friction in determining the bal-ance of power turbopump rocket engine]. PNRPU Aerospace Engineering Bulletin. 2019, No. 57, P. 17–31.
- Zuev A. A., Nazarov V. P., Arngold A. A., Petrov I. M. [The method of the disk friction deter-mining of low mass flow centrifugal pumps]. Siberian Journal of Science and Technology. 2019, Vol. 20, No. 2, P. 219–227. Doi: 10.31772/2587-6066-2019-20-2-219-227.
- Lai F., Zhu X., Li G., Zhu L., Wang F. Numerical Research on the Energy Loss of a Single-Stage Centrifugal Pump with Different Vaned Diffuser Outlet Diameters. Energy Procedia. 2019, Vol. 158, P. 5523–5528. Doi:10.1016/j.egypro.2019.01.592.
- Jiang W., Li G., Liu P., Fu L. Numerical investigation of influence of the clocking effect on the unsteady pressure fluctuations and radial forces in the centrifugal pump with vaned diffuser. Interna-tional Communications in Heat and Mass Transfer. 2016, Vol. 71, P. 164–171. Doi: 10.1016/ j.icheatmasstransfer.2015.12.025.
- Lorusso M., Capurso T., Torresi M., Fortunato B., Fornarelli F., Camporeale S. M., Monteriso R. Efficient CFD evaluation of the NPSH for centrifugal pumps. Energy Procedia. 2017, Vol. 126. P. 778–785. Doi:10.1016/j.egypro.2017.08.262.
- Wang C., Shi W., Wang X., Jiang X., Yang Y., Li W., Zhou L Optimal design of multistage centrifugal pump based on the combined energy loss model and computational fluid dynamics. Applied Energy. 2017. Vol. 187. P. 10–26. Doi:10.1016/j.apenergy.2016.11.046.
- Bakhshan Y., Omidvar A. Calculation of friction coefficient and analysis of fluid flow in a stepped micro-channel for wide range of Knudsen number using Lattice Boltzmann (MRT) method. Physica A: Statistical Mechanics and Its Applications. 2015, Vol. 440, P. 161–175. Doi: 10.1016/ j.physa.2015.08.012.
- . Basit M. A., Tian W., Chen R., Qiu S., Su G. Numerical study of laminar flow and friction characteristics in narrow channels under rolling conditions using MPS method. Nuclear Engineering and Technology. 2019. Doi:10.1016/j.net.2019.06.001.
- Galaktionov A. Yu., Khlupnov A. I. [Numerical calculation of unsteady aerodynamic charac-teristics of cylinder models for supersonic laminar flow]. Vestn. Mosk. Gos. Tekh. Univ. im. N. E. Baumana. 2015, No. 5, P. 4–13. Doi: 10.18698/0236-3941-2015-5-4-13.
- Afanasʼev V. N., Egorov K. S., Kong Dehai [Turbulence Model Validation During Analysis of the Turbulent Boundary Layer Structure near a Rectangular Ridge on a Plate]. Vestn. Mosk. Gos. Tekh. Univ. im. N. E. Baumana, Mashinostr. 2018, No. 6, P. 72–89. Doi: 10.18698/0236-3941-2018-6-72-89.
- Shlikhting G. Teoriya pogranichnogo sloya [The theory of the boundary layer]. Moscow, Sci-ence Publ., 1974, 712 p.