Ecological analysis of some Azerbaijan phanerophytes in ex situ conditions
Автор: Ahmedova Ainur
Журнал: Бюллетень науки и практики @bulletennauki
Рубрика: Химические науки
Статья в выпуске: 1 т.8, 2022 года.
Бесплатный доступ
Analyzes of the relationship of 115 species of phanerophytes used in cultural conditions (Azerbaijan) against some abiotic factors (light, temperature, water, wind, etc.) have been presented in the paper. 2 species of these taxa are hygrophytes, 56 species are mesophytes, 23 species are xerophytes, 9 species are mesoskerophytes and 25 species are xeromesophytes have been determined depending from the relationship with water according to the results of analyzes. 100 light-loving species, 15 shade-loving species, 97 wind-resistant species and 18 wind-resistant species were found as a result of the study.
Azerbaijan, water, light, temperature, phanerophyte
Короткий адрес: https://sciup.org/14122849
IDR: 14122849 | DOI: 10.33619/2414-2948/74/04
Текст научной статьи Ecological analysis of some Azerbaijan phanerophytes in ex situ conditions
Бюллетень науки и практики / Bulletin of Science and Practice
УДК 581.5
The protection of nature, including natural resources, and the preservation of the gene pool of the world's flora in general is of great importance for solving global and any country's environmental problems. In this regard, the eco-biological study of plants, including trees and shrubs, both in-situ and ex-situ is of thegreat interest both theoretically and practically [8, 9].
Any plant species are exposed to a number of environmental factors with different characteristics, both in-situ and ex-situ as known. These environmental factors directly or indirectly affect plants. These factors that affect plants sometimes reduce the number of a species, adversely affecting their reproduction and other developmental characteristic s[5, 7].
The impact of these factors (heat, light, water, wind) on the growth and development of plants on the studied plants is reflected in the research.
Materials and Methods
The material of the research was 115 species of trees and shrubs used in landscape architecture in the study area. Experiments related to the research work were carried out in the research area under ex-situ conditions. Some methods were used in implimenting of the research work [1, 2, 4, 9, 14, 16].
Results and Discussion
Sharp temperature rises occur in the summer months in recent years as known. An experiment was conducted to study the effect of these temperature rises on research plants, and one-day temperature changes were studied in this experiment.
The study was conducted in the third decade of July on 37 species existing in research material.
Highest temperature in all the plants studied is at the closest distance to the soil at 13-14 o'clock have been shown results of the analysis. Decreases in temperature were observed as they moved away from the soil surface. Recorded temperature was between 26-32 °C, depending on the species, in the area closest to the soil surface was found (Table 1).
Table 1 THERMAL CHANGES IN SOME SPECIES OF TREES AND SHRUBS INTRODUCED
IN THE STUDY AREA (July 2020)
№ |
Species |
Height above the ground (trunk) |
||
Temperature °C |
||||
0 |
Medium |
Hill |
||
1. |
Albizia julibrissin |
30,0±1,5 |
26,0±1,3 |
24,0±1,2 |
2. |
Acer pseudoplatanus |
29,0±1,5 |
26,0±1,3 |
25,0±1,2 |
3. |
Acer laetum |
29,0±1,5 |
25,0±1,2 |
24,0±1,2 |
4. |
Buxus sempervirens |
27,0±1,3 |
24,0±1,2 |
23,0±1,1 |
5. |
Celtis caucasica |
30,0±1,5 |
25,0±1,2 |
24,0±1,2 |
6. |
Celtis australis |
30,0±1,5 |
26,0±1,3 |
24,0±1,2 |
7. |
Colutea orientalis |
30,0±1,5 |
26,0±1,3 |
24,0±1,2 |
8. |
Colutea arborescens |
30,0±1,5 |
27,0±1,3 |
25,0±1,2 |
9. |
Cotoneaster horizontalis |
27,0±1,3 |
25,0±1,2 |
24,0±1,2 |
10. |
Cotoneaster melanocarpus |
26,0±1,3 |
25,0±1,2 |
24,0±1,1 |
11. |
Diospyros lotus |
30,0±1,5 |
26,0±1,3 |
25,0±1,2 |
12. |
Euonymus japonica |
29,0±1,5 |
26,0±1,3 |
24,0±1,1 |
13. |
Ficus hyrcana |
30,0±1,5 |
26,0±1,3 |
25,0±1,2 |
14. |
Gleditsia triacanthos |
29,0±1,5 |
26,0±1,3 |
24,0±1,2 |
15. |
Laurus nobilis |
28,0±1,4 |
23,0±1,2 |
22,0±1,1 |
16. |
Ligustrum japonicum |
26,0±1,3 |
23,0±1,2 |
21,0±1,1 |
17. |
Ligustrum vulgare |
31,0±1,5 |
28,0±1,4 |
27,0±1,3 |
18. |
Parrotia persica |
28,0±1,4 |
26,0±1,3 |
24,0±1,2 |
19. |
Paulownia tomentosa |
29,0±1,5 |
26,0±1,3 |
23,0±1,2 |
20. |
Platanus orientalis |
30,0±1,5 |
26,0±1,3 |
22,0±1,1 |
21. |
Prunus persica |
29,0±1,5 |
27,0±1,3 |
24,0±1,2 |
22. |
Populus hyrcana |
30,0±1,5 |
27,0±1,3 |
25,0±1,2 |
23. |
Populus euphratica |
30,0±1,5 |
28,0±1,4 |
26,0±1,2 |
Бюллетень науки и практики / Bulletin of Science and Practice Т. 8. №1. 2022 № Species Height above the ground (trunk) Temperature °C 0 Medium Hill 24. Pyracantha coccinea 30,0±1,5 26,0±1,3 23,0±1,1 25. Pyrus caucasica 31,0±1,6 25,0±1,2 24,0±1,2 26. Pyrus communis 30,0±1,5 26,0±1,3 24,0±1,2 27. Pyrus salicifolia 32,0±1,6 29,0±1,4 26,0±1,2 28. Quercus iberica 30,0±1,5 27,0±1,3 24,0±1,2 29. Quercus ilex 30,0±1,5 27,0±1,3 25,0±1,2 30. Quercus macranthera 29,0±1,5 26,0±1,3 24,0±1,2 31. Quercus castaneifolia 29,0±1,5 26,0±1,3 25,0±1,2 32. Robinia pseudoacacia 30,0±1,5 27,0±1,3 25,0±1,2 33. Salix caprea 31,0±1,6 27,0±1,4 26,0±1,3 34. Salix babylonica 30,0±1,5 26,0±1,3 24,0±1,2 35 Tilia caucasica 29,0±1,5 26,0±1,3 24,0±1,2 36. Ulmus minor 31,0±1,5 28,0±1,4 25,0±1,2 37. Zelkova carpinifolia 30,0±1,5 27,0±1,3 24,0±1,2
Depending on the species, the temperature at the height from the soil surface to the top of the plant is 4-7 0 C less than the area close to the soil surface have been shown our observations. Rising temperatures lead to the breakdown of protein in plants, the accumulation of ammonia and the disruption of cell structure [6, 11].
Low rainfall in the study area during the summer months reduces the amount of water in the soil. Higher water evaporation from the plants further reduces the amount of water in the soil. Thus, there is an inversely proportional relationship between the amount of precipitation and the evaporation of water from plants. In this case, there is a delay in the growth and development of plants introduced in the research area. Yellowing, burning and shedding were observed in the leaves of some of the studied species have been showed results of study. Examples include Parrotia persica, Populus hyrcana, Platanus orientalis, Pyrus caucasica, Quercus castaneifolia, Euonymus latifolia, Albizia julibrissin, Diospyros lotus, Euonymus latifolia, Acer pseudoplatanus and others. These burns observed in the leaves of plants start at the edges of the leaf and develop towards the middle of the leaf, covering the entire leaf axis, and as a result, the leaf falls off was found result of phenological observations.
The resistance of the studied plants to light and wind was studied during the research. As we know, the increase and decrease of the length of the day can lead to leaf loss, affects processes such as flowering, branching, leaf splitting, pigment formation, etc. in plants [15]. In this regard, the plants are divided into 2 groups - short-day and long-day plants. The plants spread in different geographical regions have acquired signs of ecological adaptation to the light time of the place is known from the ecological point of view. During the research, 102 species of plants were found to be light-loving and 13 species were shade-loving (Table 2).
Phenological observations revealed that a number of morphological changes took place in some studiedspecies among the light-loving introducers. The stems of such plants are thick, tall and very branched. The leaves are small, simple, and the veins are thin and hairy. This type of plants have high flowering and fruiting, late flowering and fast flowering [11, 14]. These plants are resistant to heat and drought. Among the studied plants are Juniperus sabina, Pinus halepensis, Pinus eldarica, Abelia grandiflora, Acacia dealbata, Berberis thunbergii, Berberis vulgaris, Celtis caucasica, Cercis siliguastrum, Colutea arborescental, Colutea obdon, Colutea ordon, Colutea ordon, Colutea ordonas triacanthos, Populus euphratica, and other types can be shown.
Table 2
RELATION OF STUDIED PLANTS TO LIGHT AND WIND
№ |
Species |
light-loving |
shade-loving |
wind resistance |
Pinophyta |
||||
1. |
Abies nordmanniana Spach. |
+ |
- |
|
2. |
Cedrus libani A. Rich |
+ |
- |
|
3. |
Cupressus sempervirens L. |
+ |
- |
|
4. |
Cupressus sempervirens L. var . horizontalis (Mill). Gord. |
+ |
- |
|
5. |
Cupressus sempervirens L. var . pyramidalis Targ. |
+ |
- |
|
6. |
Cupressus arizonica Greene. |
+ |
+ |
|
7. |
Cupressus x leylandii A. B. Jacks & Dallim |
+ |
+ |
|
8. |
Juniperus communis L. |
+ |
+ |
|
9. |
Juniperus sabina L. |
+ |
+ |
|
10. |
Pinus еldarica Medw. |
+ |
+ |
|
11. |
Pinus halepensis Mill. |
+ |
+ |
|
12. |
Pinus pinea L. |
+ |
+ |
|
13. |
Taxus baccata L. |
+ |
- |
|
14. |
Taxus cuspidata Sieb.et Zucc. |
+ |
- |
|
15. |
Thuja orientalis L. |
+ |
+ |
|
Magnoliophyta |
||||
1. |
Abelia grandiflora Rehd. |
+ |
+ |
|
2. |
Acacia dealbata Link. |
+ |
+ |
|
3. |
Acer campestre L. |
+ |
+ |
|
4. |
Acer velutinum Boiss. |
+ |
+ |
|
5. |
Acer pseudoplatanus L. |
+ |
+ |
|
6. |
Acer laetum C.A.Mey. |
+ |
+ |
|
7. |
Agave americana L. |
+ |
+ |
|
8. |
Ailanthus altissima (Mill.) Swingle. |
+ |
+ |
|
9. |
Albizia julibrissin Durazz. |
+ |
+ |
|
10. |
Berberis thunbergii DC. |
+ |
+ |
|
11. |
Berberis vulgaris L. |
+ |
+ |
|
12. |
Buxus sempervirens L. |
+ |
+ |
|
13. |
Broussonetia papyrifera (L.)Vent. |
+ |
+ |
|
14. |
Catalpa bignonioides Walt. |
+ |
+ |
|
15. |
Carpinus betulus L. |
+ |
+ |
|
16. |
Castanea sativa Mill. |
+ |
- |
|
17. |
Celtis caucasica Willd. |
+ |
+ |
|
18. |
Cercis siliguastrum L. |
+ |
+ |
|
19. |
Cornus mas L. |
+ |
- |
|
20. |
Colutea arborescens L. |
+ |
+ |
|
21. |
Colute aorientalis Mill. |
+ |
+ |
|
22. |
Cotoneaster horizontalis Decne. |
+ |
+ |
|
23. |
Cotoneaster melanocarpus Load. |
+ |
+ |
|
24. |
Crataegus monogyna Jacq. |
+ |
+ |
Бюллетень науки и практики / Bulletin of Science and Practice Т. 8. №1. 2022
25. |
Cydonia oblonga Mill. |
+ |
+ |
26. |
Diospyros lotus L. |
+ |
+ |
27. |
Elaeagnus angustifolia L. |
+ |
+ |
28. |
Eriobotrya japonica Lindl. |
+ |
+ |
29. |
Euonymus japonicus L. |
+ |
+ |
30. |
Eucalyptus leucoxylon F.Muell. |
+ |
+ |
31. |
Eucalyptus camaldulensis Dehn. |
+ |
+ |
32. |
Ficus carica L. |
+ |
+ |
33. |
Ficus hyrcana A. Grossh. |
+ |
+ |
34. |
Fraxinus excelsior L. |
+ |
+ |
35. |
Fraxinus velutina Torr. |
+ |
+ |
36. |
Fraxinus malocophulla Hemsl. |
+ |
+ |
37. |
Gleditsia triacanthos L. |
+ |
+ |
38. |
Hedera colchica C.Koch. |
+ |
+ |
39. |
Hedera helix L. |
+ |
+ |
40. |
Hydrangea paniculata Sieb. |
+ |
+ |
41. |
Hibiscus syriacus L. |
+ |
- |
42. |
Jasminum nudiflorum Lindl. |
+ |
+ |
43. |
Juglans regia L. |
+ |
+ |
44. |
Laurus nobilis L. |
+ |
- |
45. |
Lonicera japonica Thunb. |
+ |
+ |
46. |
Lonicera caucasica Pall. |
+ |
+ |
47. |
Lonicera caprifolium L. |
+ |
+ |
48. |
Ligustrum japonicum Thunb. |
+ |
+ |
49. |
Ligustrum vulgare L. |
+ |
+ |
50. |
Maclura pomifera (Raf.) Sjhn. |
+ |
+ |
51. |
Magnolia grandiflora L. |
+ |
- |
52. |
Malus domestica Borkh. |
+ |
+ |
53. |
Malus silvestris Mill. |
+ |
+ |
54. |
Mahonia aquifolium Nutt. |
+ |
- |
55. |
Melia azedarach L. |
+ |
+ |
56. |
Mespilus germanica L. |
+ |
+ |
57. |
Morus alba L. |
+ |
+ |
58. |
Morus nigra L. |
+ |
+ |
59. |
Morus rubra L. |
+ |
+ |
60. |
Nerium oleander L. |
+ |
+ |
61. |
Olea europaea L. |
+ |
+ |
62. |
Parrotia persica (DC.) C. A. Mey. |
+ |
+ |
63. |
Platanus orientalis L. |
+ |
+ |
64. |
Pittosporum tobira Dryand. |
+ |
+ |
65. |
Populus euphratica Olivier. |
+ |
+ |
66. |
Populus hyrcana Grossh. |
+ |
+ |
67. |
Phoenix dactylifera L. |
+ |
- |
68. |
Prunus armeniaca L |
+ |
+ |
69. |
Prunus padus L. |
+ |
+ |
70. |
Prunus dulcis Mill. |
+ |
+ |
71. |
Prunus persica (L.) Batsch |
+ |
+ |
Бюллетень науки и практики / Bulletin of Science and Practice Т. 8. №1. 2022
72. |
Prunus domestica L. |
+ |
+ |
73. |
Pyrus communis L. |
+ |
+ |
74. |
Pyrus salicifolia Pall. |
+ |
+ |
75. |
Pyrus caucasica Fed. |
+ |
+ |
76. |
Pyracantha coccinea Roem. |
+ |
+ |
77. |
Quercus castaneifolia J. A. Mey. |
+ |
+ |
78. |
Quercus ilex L. |
+ |
+ |
79. |
Quercus iberica Stev. |
+ |
+ |
80. |
Quercus macranthera Fisih. M. |
+ |
+ |
81. |
Rhamnus alaternus L. |
+ |
+ |
82. |
Robinia pseudoacacia L. |
+ |
- |
83. |
Rosmarinus officinalis L. |
+ |
+ |
84. |
Salix caprea L. |
+ |
+ |
85. |
Salix babylonica L. |
+ |
+ |
86. |
Sophora japonica L. |
+ |
+ |
87. |
Spiraea vanhouttei ( Briot) Zbl |
+ |
- |
88. |
Syringa vulgaris L. |
+ |
+ |
89. |
Tamarix tetrandra Pall. |
+ |
+ |
90. |
Tecoma radicans Seem. |
+ |
+ |
91. |
Trachycarpus excelsa |
+ |
- |
92. |
Tilia caucasica Rupr. |
+ |
+ |
93. |
Ulmus parvifolia Jacq. |
+ |
+ |
94. |
Ulmus minor Mill . |
+ |
+ |
95. |
Viburnum tinus L.Hemsl. |
+ |
+ |
96. |
Vitex negundo L. |
+ |
+ |
97. |
Vitis sylvestris Gmel. |
+ |
+ |
98. |
Yucca aloifolia L. |
+ |
+ |
99. |
Washingtonia filifera H.Wendl. |
+ |
- |
100 |
Zelkova carpinifolia (Pall.) K. Koch. |
+ |
+ |
Abelia grandiflora, Albizia julibrissin, Berberis thunbergii, Broussonetia papyrifera, Catalpa bignonioides, Ficus hyrcana, Melia azedarach and others growing in shady places. As a result of observations on the species, it was found that there is a weakening in the development of these plants, including a decrease in the percentage of flowering, an increase in the number of side branches, thinning of the leaves.
Taxus baccata, Taxus cuspidata, Buxus sempervirens, Acer pseudoplatanus, Acer laetum, Carpinus betulus, Castanea sativa, Hedera colchica, Ligustrum japonicum, etc., planted in open areas exposed to light was found during the research. On hot summer days, the formation of burns on the leaves of these plants is observed in growth and developmental delays.
-
18 of these plants are not wind-resistant and 97 species are wind-resistant was found in studying the wind resistance of the studied plants. In general, wind affects all plant species to one or another degree have been shown in the results of phenological observations.
Water is of special importance in the growth and development of plants and the formation of vegetation from an ecological point of view as known.
The water source, the water intake and evaporation by the plants, and their grouping according to their water needs. So, the ecological importance of water for plants is important to understand, it to know the water needs of the plant species.
In this regard, we tried to study the division of the studied plants in the study area by groups according to their water needs.
The plants studied by us are divided into 5 different groups according to their need for water.
-
2 of the studied species were hygrophytes, 56 were mesophytes, 23 were xerophytes, 9 were mesoxerophytes, and 25 were xeromesophytes have been shown the analysis results (Table 3).
Two species of plants studied, Eucalyptus leucoxylon and Eucalyptus camaldulensis , belong to the group of hygrophytes - that is living in humid places. These plants are naturally distributed in humid areas.
The mesophyte (moderately in need of water) group includes 56 plant species ( Abelia grandiflora, Acer pseudoplatanus, Taxus baccata, Thuja orientalis, Acer laetum, Berberis thunbergii, Berberis vulgaris, Catalpa bignonioides, Albizia julib betulus, etc.) as can be seen from Table 3. The plants included in this group have a well-developed root system and other morphological organs.
Table 3
DISTRIBUTION OF WOODY PLANTS IN EX-SITU CONDITIONS IN THE STUDY AREA ACCORDING TO THE NEED OF WATER
№ Species Groups
3 1 |
Co 1 8 5 |
co |
|||
Pinophyta |
|||||
1. |
Abies nordmanniana Spach. |
+ |
|||
2. |
Cedrus libani A.Rich |
+ |
|||
3. |
Cupressus sempervirens L. |
+ |
|||
4. |
Cupressus sempervirens L. var . horizontalis (Mill). Gord. |
+ |
|||
5. |
Cupressus sempervirens L. var . pyramidalis Targ. |
+ |
|||
6. |
Cupressus arizonica Greene. |
+ |
|||
7. |
Cupressus x leylandii A. B. Jacks &Dallim |
+ |
|||
8. |
Juniperus communis L. |
+ |
|||
9. |
Juniperus sabina L. |
+ |
|||
10. |
Pinus еldarica Medw. |
+ |
|||
11. |
Pinus halepensis Mill. |
+ |
|||
12. |
Pinus pinea L. |
+ |
|||
13. |
Taxus baccata L. |
+ |
|||
14. |
Taxus cuspidata Sieb.et Zucc. |
+ |
|||
15. |
Thuja orientalis L. |
+ |
|||
Magnoliophyta |
|||||
1. |
Abelia grandiflora Rehd. |
+ |
|||
2. |
Acacia dealbata Link. |
+ |
|||
3. |
Acer campestre L. |
+ |
|||
4. |
Acer velutinum Boiss. |
+ |
|||
5. |
Acer pseudoplatanus L. |
+ |
|||
6. |
Acer laetum C.A.Mey. |
+ |
|||
7. |
Agave americana L. |
+ |
|||
8. |
Ailanthus altissima (Mill.) Swingle. |
+ |
|||
9. |
Albizia julibrissin Durazz. |
+ |
|||
10. |
Berberis thunbergii DC. |
+ |
|||
L®, |
© 1 Тип лицензии CC: Attribution 4.0 International (CC BY 4.0) |
37 |
№ |
Species |
Groups |
||||
3 |
со 5 |
3 1 |
Со 1 8 5 |
СО |
||
11. |
Berberis vulgaris L. |
+ |
||||
12. |
Buxus sempervirens L. |
+ |
||||
13. |
Broussonetia papyrifera (L.)Vent. |
+ |
||||
14. |
Catalpa bignonioides Walt. |
+ |
||||
15. |
Carpinus betulus L. |
+ |
||||
16. |
Castanea sativa Mill. |
+ |
||||
17. |
Celtis caucasica Willd. |
+ |
||||
18. |
Cercis siliguastrum L. |
+ |
||||
19. |
Cornus mas L. |
+ |
||||
20. |
Colutea arborescens L. |
+ |
||||
21. |
Colute aorientalis Mill. |
+ |
||||
22. |
Cotoneaster horizontalis Decne. |
+ |
||||
23. |
Cotoneaster melanocarpus Load. |
+ |
||||
24. |
Crataegus monogyna Jacq. |
+ |
||||
25. |
Cydonia oblonga Mill. |
+ |
||||
26. |
Diospyros lotus L. |
+ |
||||
27. |
Elaeagnus angustifolia L. |
+ |
||||
28. |
Eriobotrya japonica Lindl. |
+ |
||||
29. |
Euonymus japonicus L. |
+ |
||||
30. |
Eucalyptus leucoxylon F.Muell. |
+ |
||||
31. |
Eucalyptus camaldulensis Dehn. |
+ |
||||
32. |
Ficus carica L. |
+ |
||||
33. |
Ficus hyrcana A. Grossh. |
+ |
||||
34. |
Fraxinus excelsior L. |
+ |
||||
35. |
Fraxinus velutina Torr. |
+ |
||||
36. |
Fraxinus malocophulla Hemsl. |
+ |
||||
37. |
Gleditsia triacanthos L. |
+ |
||||
38. |
Hedera colchica C.Koch. |
+ |
||||
39. |
Hedera helix L. |
+ |
||||
40. |
Hydrangea paniculata Sieb. |
+ |
||||
41. |
Hibiscus syriacus L. |
+ |
||||
42. |
Jasminum nudiflorum Lindl. |
+ |
||||
43. |
Juglans regia L. |
+ |
||||
44. |
Laurus nobilis L. |
+ |
||||
45. |
Lonicera japonica Thunb. |
+ |
||||
46. |
Lonicera caucasica Pall. |
+ |
||||
47. |
Lonicera caprifolium L. |
+ |
||||
48. |
Ligustrum japonicum Thunb. |
+ |
||||
49. |
Ligustrum vulgare L. |
+ |
||||
50. |
Maclura pomifera (Raf.) Sjhn. |
+ |
||||
51. |
Magnolia grandiflora L. |
+ |
||||
52. |
Malus domestica Borkh. |
+ |
||||
53. |
Malus silvestris Mill. |
+ |
||||
54. |
Mahonia aquifolium Nutt. |
+ |
||||
55. |
Melia azedarach L. |
+ |
||||
56. |
Mespilus germanica L. |
+ |
№ |
Species |
Groups |
|||
1 3 4 > ^ & bo |
1 |
Со 1 8 5 |
со |
||
57. |
Morus alba L. |
+ |
|||
58. |
Morus nigra L. |
+ |
|||
59. |
Morus rubra L. |
+ |
|||
60. |
Nerium oleander L. |
+ |
|||
61. |
Olea europaea L. |
+ |
|||
62. |
Parrotia persica (DC.) C.A. Mey. |
+ |
|||
63. |
Platanus orientalis L. |
+ |
|||
64. |
Pittosporum tobira Dryand. |
+ |
|||
65. |
Populus euphratica Olivier. |
+ |
|||
66. |
Populus hyrcana Grossh. |
+ |
|||
67. |
Phoenix dactylifera L. |
+ |
|||
68. |
Prunus armeniaca L |
+ |
|||
69. |
Prunus padus L. |
+ |
|||
70. |
Prunus dulcis Mill. |
+ |
|||
71. |
Prunus persica (L.) Batsch |
+ |
|||
72. |
Prunus domestica L. |
+ |
|||
73. |
Pyrus communis L. |
+ |
|||
74. |
Pyrus salicifolia Pall. |
+ |
|||
75. |
Pyrus caucasica Fed. |
+ |
|||
76. |
Pyracantha coccinea Roem. |
+ |
|||
77. |
Quercus castaneifolia J.A.Mey. |
+ |
|||
78. |
Quercus ilex L. |
+ |
|||
79. |
Quercus iberica Stev. |
+ |
|||
80. |
Quercus macranthera Fisih. M. |
+ |
|||
81. |
Rhamnus alaternus L. |
+ |
|||
82. |
Robinia pseudoacacia L. |
+ |
|||
83. |
Rosmarinus officinalis L. |
+ |
|||
84. |
Salix caprea L. |
+ |
|||
85. |
Salix babylonica L. |
+ |
|||
86. |
Sophora japonica L. |
+ |
|||
87. |
Spiraea vanhouttei ( Briot) Zbl |
+ |
|||
88. |
Syringa vulgaris L. |
+ |
|||
89. |
Tamarix tetrandra Pall. |
+ |
|||
90. |
Tecoma radicans Seem. |
+ |
|||
91. |
Trachycarpus excelsa |
+ |
|||
92. |
Tilia caucasica Rupr. |
+ |
|||
93. |
Ulmus parvifolia Jacq. |
+ |
|||
94. |
Ulmus minor Mill . |
+ |
|||
95. |
Viburnum tinus L.Hemsl. |
+ |
|||
96. |
Vitex negundo L. |
+ |
|||
97. |
Vitis sylvestris Gmel. |
+ |
|||
98. |
Yucca aloifolia L. |
+ |
|||
99. |
Washingtonia filifera H.Wendl. |
+ |
|||
100. |
Zelkova carpinifolia (Pall.) K. Koch. |
+ |
The analysis showed that 23 species enteredto this group ( Cupressus sempervirens, Cupressus arizonica, Pinus eldarica, Pinus halepensis, Celtis caucasica, Cercis siliguastrum, Colutea arborescens, Elaeagnis, Elaeagnus slag, etc.) belong to the xerophyte group (low water needs). It became clear that these plants are naturally distributed in arid regions in result of observations.
In general, unlike plants belonging to the mesophyte group, xerophytic plants are divided into two types of adaptation to the conditions under which they grow. Therefore, the root system, including the main root, develops well, the leaves shrink or change shape, and the leaves are covered with a layer of wax or hair at xerophyte plants .
9 species ( Cotoneaster horizontalis, Prunus armeniaca, Tamarix tetrandra, Populus euphratica, Padus mahaleb, etc.) belong to the mesoxerophyte group. Plants in this group are drought tolerant and have a certain need for water have been shown the results of the analysis.
The xeromesophyte group includes 25 species ( Ailanthus altissima, Vitex negundo, Ulmus minor, Syringa vulgaris, Robinia pseudoacacia, Sophora japonica, etc.). Species belonging to this group are more resistant to drought than mesoxerophyte species. These species did not show any damage to their morphological organs during the hot summer months have been shown results of phenological observations.
The trees and shrubs studied according to their water needs have different ecological needs and can be widely used for landscaping in the cities and settlements according to their wishes have been revealed in the results of the research.
Conclusion
-
1. 102 species are light-loving, 13 species are shade-loving, 97 are wind-resistant, 56 are mesophytes, 23 are xerophytes, 9 are mesoxerophytes, 25 are xeromesophytes and 2 are hygrophytes found to form the cultural dendroflora according to the ecological attitude of the studied plants to the light.
-
2. The temperature changes between 26-32°C in the area closest to the soil surface and at the height from the soil surface to the top of the plant it was found to be less than 4-7°C at studying the daily temperature changes of the studied plants at different heights from the soil surface, depending on the type.
Recommendations
Collect and mobilize planting and sowing materials from productive species of different geographical origins with different gene- and phenotypic characteristics in their natural habitat, taking into account in situ conditions their bioecological characteristics and historical past is necessary in order to increase the rate of introduction of trees and shrubs to be used in cultural conditions.
Список литературы Ecological analysis of some Azerbaijan phanerophytes in ex situ conditions
- Akhmatov, K. A. (1972). Polevoi metod opredeleniya zharoustoichivosti rastenii. Byulleten' glavnogo botanicheskogo sada, 86, 24 26. (in Russian).
- Beideman, I. N. (1979). Metodika izucheniya fenologii rastenii i rastitel'nykh soobshchestv. Novosibirsk. (in Russian).
- Goodfellow, S., & Barkham, J. P. (1974). Spectral transmission curves for a beech (Fagus sylvatica L.) canopy. Acta Botanica Neerlandica, 23(3), 225 230. https://doi.org/10.1111/j.14388677.1974.tb00940.x
- Genkel', P. A. (1956). Diagnostika zasukhoustoichivosti kul'turnykh rastenii i sposoby ee povysheniya. Moscow. (in Russian).
- Iskender, E. O., & Sadygova, N. A. (2018). Ekologiya rastenii, Baku.
- Iskender, E. O. (2008). Sovremennoe sostoyanie izucheniya bioekologicheskikh osobennostei v usloviyakh in situ i ex situ redkikh i ischezayushchikh derev'ev i kustarnikov Azerbaidzhana. Izvestiya NANA, (5 6), 48 58.
- Iskender, E. O. (2011). Analiz vliyaniya abioticheskikh faktorov na usloviya in situ i ex situ redkikh derev'ev i kustarnikov v Azerbaidzhane. Izvestiya Tsentral'nogo botanicheskogo sada NANA, (9), 42 57.
- Iskender, E. O. (2008). Ritm sezonnogo razvitiya nekotorykh redkikh vidov Azerbaidzhana v usloviyakh ex situ. In Aktual'nye problemy bioekologii: Materialy Mezhdunarodnoi nauchno prakticheskoi konferentsii, Moscow, 32 34. (in Russian).
- Iskenderov, E. O. (1993). Otsenka perspektiv introduktsii redkikh i ischezayushchikh drevesnykh porod Kavkaza v usloviyakh Apsherona. Byulleten' Tsentral'nogo Botanicheskogo Sada, (169), 124 130.
- Konstantinidis, P., Tsiourlis, G., Xofis, P., & Buckley, G. P. (2008). Taxonomy and ecology of Castanea sativa Mill. forests in Greece. Plant ecology, 195(2), 235 256. https://doi.org/10.1007/s11258 007 9323 8
- Kurbanov, M. R. (2004). Prognozirovanie urozhainosti plodov i semyan v zavisimosti ot faktorov okruzhayushchei sredy. Izvestiya Natsional'noi Akademii Nauk Azerbaidzhana, 4(38), 3 47.
- Malekhov, A. I. (1984). Semennoe razmnozhenie redkikh i ischezayushchikh vidov flory SSSR v botanicheskom sadu Syktyvkarskogo universiteta. Materialy soveshchaniya po okhrane mirovoi rastitel'nosti severnykh regionov, (1), 140 149. (in Russian).
- Mamedov, T. S., Asadov, G. G., Novruzov, V. M., & Mirdzhalally, I. V. (2015). Bioekologicheskie osobennosti ustoichivosti rastenii v antropogeneticheski zagryaznennykh pochvakh. Global'nyi zhurnal biologii, sel'skogo khozyaistva i zdravookhraneniya, 4(1), 44 47. (in Russian).
- Molchanov, A. A., & Smirnov, V. V. (1967). Metody izucheniya rosta drevesnykh rastenii. Moscow. (in Russian).
- Tarakanov, I. G. (2005). Zhiznennye strategii rastenii v zavisimosti ot uslovii osveshcheniya: zhiznenno vazhnye i signal'nye v roli sveta. Mir teplits, (6), 34 35. (in Russian).
- Zaitsev, G. N. (1981). Fenologiya drevesnykh rastenii. Moscow. (in Russian).