Effect of acute hypoxia on the functional state of erythrocytes and hemoglobin in black scorpionfish
Автор: Soldatov A.A., Andreyeva A.Y., Kukhareva T.A., Kladchenko E.S.
Журнал: Журнал стресс-физиологии и биохимии @jspb
Статья в выпуске: 3 т.19, 2023 года.
Бесплатный доступ
In the present work the influence of hypoxia on black scorpionfish ( Scorpaena porcus ) nucleated red blood cells has been studied at in vivo (whole blood) and in vitro (cell suspension) experiments. Experiments were conducted in the range of oxygen concentration 0,3-8,5 mg О2 l-1, water temperature 14-16 оС, and the duration of exposure period was 4 h. Deep hypoxia (less than 2 mgО2 l-1) caused hemoglobin transition to a ferry-form (MtHb), and the most substantial increase of MtHb concentration was observed at severe hypoxic conditions (less than 1 mg О2 l-1). The highest MtHb level observed was 19-32 %. The results of in vivo and in vitro experimental series were similar, indicating that mechanisms involved in MtHb formation occur within cells and are not associated with organismic responses to oxygen deficiency. Moderate hypoxia (oxygen concentration more than 2 mg О2 l-1) did not cause hemoglobin transformation. MtHb formation did not influence the level of reactive oxygen species (DCF-DA fluorescence) and the integrity of cellular membrane (double staining with SYBR Green I and Propidium iodide) in red blood cells. The level of dead cells in control and experimental groups did not differ, indicating that responses observed were in the range of physiological norm.
Hypoxia, experiments in vivo and in vitro, red blood cells, methemoglobin, flow cytometry
Короткий адрес: https://sciup.org/143180573
IDR: 143180573
Список литературы Effect of acute hypoxia on the functional state of erythrocytes and hemoglobin in black scorpionfish
- Adragna N.C., Di Fulvio M. and Lauf P.K. (2004). Regulation of K-Cl cotransport: from function to genes. J. Memb. Biol., 201, 109-137.
- Affonso E.G., Polez V.L., Correa C.F., Mazon A.F., Araujo M.R., Moraes G. and Rantin F.T. (2002). Blood parameters and metabolites in the teleost fish Colossoma macropomum exposed to sulfide or hypoxia. Comp. Biochem. Physiol. C., 133, 375382.
- Andreyeva A.Y., Soldatov A.A. and Mukhanov V.S. (2017). The influence of acute hypoxia on the functional and morphological state of the black scorpionfish red blood cell. In Vitro Cell Develop. Biol. - Animal., 53, 312-319.
- Arnaud J., Quilici J.C., Gutierrez N., Beard J. and Vergnesa H. (1979). Methaemoglobin erythrocyte reducing systems in high-altitude natives. Annual Human Biology., 6, 585-592.
- Benesch R.E., Benesch R. and Yung S. (1973). Equations for the spectrophotometric analysis of hemoglobin mixtures. Anal. Biochem., 55, 245-248.
- Boutilier R.G. and Ferguson R.A. (1989). Nucleated red cell function: metabolism and pH regulation. Canadian J. Zool., 67, 2986-2993.
- Cameron J.N. (1971). Methemoglobin in erythrocytes of rainbow trout. Comp. Biochem. Physiol. A., 40, 743-749.
- Chen N., Wu M., Tang G-P., Wang H-J., Huang C-X., Wu X-J., He Y., Zhang B., Huang C-H., Liu H., Wang W-M. and Wang Y-L. (2017). Effects of Acute Hypoxia and Reoxygenation on Physiological and Immune Responses and Redox Balance of Wuchang Bream (Megalobrama amblycephala Yih, 1955). Frontiers in Physiol., 8, 1-9.
- Dafre A.L. and Reischl E. (1997). Asymmetric hemoglobins, their thiol content, and blood glutathione of the scalloped hammerhead shark, Sphyrna lewini. Comp. Biochem. Physiol. B.,116, 323-331.
- Ferguson R.A. and Boutilier R.G. (1988). Metabolic energy production during adrenergic pH regulation in red cells of the atlantic salmon, Salmo salar. Resp. Physiol., 74, 65-76.
- Hardig J. and Hoglund L.B. (1983). Seasonal and ontogenetic effects on methaemoglobin and reduced glutathione contents in the blood of reared baltic salmon. Comp. Biochem. Physiol. A., 76, 2734.
- Holk K. (1996). Effects of isotonic swelling on the intracellular Bohr factor and the oxygen affinity of trout and carp blood. Fish Physiol. Biochem., 15, 371-375.
- Jensen F.B., Fago A. and Weber R.E. (1998). Hemoglobin structure and function Fish Physiology. 17 (ed. S.F. Perry and B.L. Tufts). San Diego: Acad. Press.
- Krishna M.S. and Venkataramana G. (2007). Status of lipid peroxidation, glutathione, ascorbic acid, vitamin E and antioxidant enzymes in patients with pregnancy-induced hypertension. Indian J. Physiol. Pharmacol., 51, 284-288.
- Lushchak V.I. and Bagnyukova T.V. (2007). Effects of different environmental oxygen levels on free radical processes in fish. Comp. Biochem. Physiol. B., 144, 283-289.
- Mansouri A. 1981. Methemoglobin formation and reduction in relation to hemoglobin oxygen affinity. Experientia., 37, 95-96.
- Mather-Mihaich E. and Di-Giulio R.T. (1991). Oxidant, mixed-function oxidase and peroxisomal responses in channel catfish exposed to a bleached kraft mill effluent. Arch. Environ. Contam. Toxicol., 20, 391397.
- Nikinmaa M., Cech J.J., Ryhaenen L. and Salama A. (1987). Red cell function of carp (Cyprinus carpio) in acute hypoxia. J. Exp. Biol., 47, 53-58.
- Olander C.P. and Parr C.E. (1978). Methemoglobin in hypoxic rats. Experientia., 33, 1656-1657.
- Percy M.J. and Lappin T.R. (2008). Recessive congenital methaemoglobinaemia: cytochrome b(5) reductase deficiency. Brazilian J. Haematol., 141, 298-308.
- Perutz M.F. (1990). Mechanisms regulating the reactions of human haemoglobin with oxygen and carbon monoxide. Ann. Rev. Physiol., 52, 1-25.
- Phillips M.C.L., Moyes C.D. and Tufts B.L. (2000). The effects of cell ageing on metabolism in rainbow trout (Oncorhynchus mykiss) red blood cells. J. Exp. Biol., 203, 1039-1045.
- Sajiki J. and Takahashi K. (1991). In vitro formation of methemoglobin by lipophilic fractions in fishes and the causative substance. Eisei-Kagaku., 37, 467472.
- Salama A. and Nikinmaa M. (1990). Effect of oxygen tension on catecholamine-induced formation of cAMP and on swelling of carp red blood cells. Amer. J. Physiol. - Cell Physiol., 259, C723-C726.
- Schechter A.N. (2008). Hemoglobin research and the origins of molecular medicine. Blood.,112, 39273938.
- Schoore E.J., Simco B.A. and Davis K.B. (1995). Responses of blue catfish and channel catfish to environmental nitrite. J. Aquat. Anim. Health., 7, 304-311.
- Soivio A., Nyholm K. and Westman K. (1974). Changes in haematocrit values in blood samples treated with and withoutoxygen: a comparative study with four salmonid species. J. Fish. Biol., 6, 763-769.
- Soldatov A.A. (2005). Physiological Aspects of Effects of Urethane Anesthesia on the Organism of Marine Fishes. Hydrobiol. J, 41, 113-126.
- Soldatov A.A., and Parfenova I.A. (2001). The methemoglobin blood level and stability of circulating erythrocytes of the rockfish Scorpaena porcus to osmotic shock under conditions of experimental hypoxia. J. Evolut. Biochem. Physiol., 37, 622-625.
- Soldatov A.A., Parfyonova I.A. and Konoshenko S.V. (2004). Haemoglobin system of black sea round goby under experimental hypoxia conditions. Ukrain'skyi BiokhimichnyiZhurnal., 76, 85-90.
- Stara A., Machova J. and Velisek J. (2012). Effect of chronic exposure to prometryn on oxidative stress and antioxidant response in eatly life stages of common carp (Cyprinus carpio L.J. Neuro. Endocrinol. Lett., 33, 130-135.
- Tiihonen K. and Nikinmaa M. (1991). Short communication substrate utilization by carp (Cyprinus carpio) erythrocytes. J. Exp. Biol., 161, 509-514.
- Tucker C.S. and MacMillan J.R. (1992). Effect of short-term starvation on methemoglobin levels in nitrite-exposed channel catfish. J. Appl. Aquacult., 1, 2128.
- Tufts B. (1992). In vitro edivence for sodium-dependent pH regulation in sea lamprey (Petromyzon marinus) red blood cells. Can. J. Zool., 70, 411-416.
- Val A.L., De Menezes G.C. and Wood C.M. (1997). Red blood cell adrenergic responses in Amazonian teleosts. J. Fish. Biol., 52, 83-93.
- Wallace W.J., Houtchens R.A., Maxwell J.C. and Caughey W.S. (1982). Mechanism of autooxidation for haemoglobins and myoglobins: Promotion of superoxide production by protons and anion. J. Biol. Chem, 257, 4966-4977.
- Wdzieczak J., Zalesna G., Bartkowiak A., Witas H. and Leyko W. (1982). Comparative studies on superoxide dismutase, catalase and peroxidase level in erythrocytes and livers of different fresh water and marine fish species. Comp. Biochem. Physiol. B, 73, 361-365.
- White A., Handler Ph., Smith E.L., Hill R.L. and Lehman R. (1978). Principles Biochemistry. McGRAW-Hill. NJ.
- Willmore W.G. and Storey K.B. (1997). Antioxidant systems and anoxia tolerance in a freshwater turtle, Trachemys scripta elegans. Mol. Cell. Biochem., 170, 177-185.
- Wilson R.R.Jr. and Knowles F.C. (1987). Temperature adaptation of fish haemoglobins reflected in rates of autoxidation. Arch. Biochem. Biophys., 255, 210213.
- Zikic R.V., Stajn A. and Petrovic V.M. (1991). Effect of dexamethasone on the activity of superoxide dismutase and catalase in the tissue and erythrocytes of goldfish. Acta Biol. Jugoslavica., C 27, 45-51.