Effect of chelating agents and metal ions on nickel bioavailability and chlorophyll fluorescence response in wheat- an approach for attenuation of Ni stress
Автор: Patnaik Nilima, Mohanty Monalisa, Satpathy Bijaylaxmi, Kumar Patra Hemanta
Журнал: Журнал стресс-физиологии и биохимии @jspb
Статья в выпуске: 3 т.8, 2012 года.
Бесплатный доступ
The objectives of the study are to analyze the physiological changes, biochemical alterations and attenuation of nickel toxicity effects in wheat seedlings under combined applications of Ni ions, metal chelators (EDTA/Citric Acid) and metal ions (Zn2+ /Mg2+). Wheat (Triticum aestivum L cv UP262) seedlings were grown hydroponically using different concentrations of Ni up to 7 days along with chelators and metal ions for study. The seedling growth was maximum with NiCl2-Zn2+ (100µM) and minimum with NiCl2-EDTA (100µM) treatments. Total chlorophyll content was maximum in the seedlings treated with NiCl2-Zn2+ (100µM) and minimum in NiCl2-EDTA (100µM) treatments. NiCl2-EDTA (100µM) showed less Fo and Fm values and therefore, a trend in the decrease in OJIP transient indicates the maximum alteration of photochemical activity of PS-II in presence of NiCl2-EDTA (100µM) treatment. Similar observation was found by NiCl2 -EDTA (200µM) treatment where Fo and Fm values were noted to decline. High nickel content in roots of the seedlings was noted as compared to shoots.
Chelating agents, metal ions, nickel, chlorophyll-a fluorescence, biochemical alterations
Короткий адрес: https://sciup.org/14323678
IDR: 14323678
Список литературы Effect of chelating agents and metal ions on nickel bioavailability and chlorophyll fluorescence response in wheat- an approach for attenuation of Ni stress
- Alloway, B.J. (1990) Heavy Metals in Soils. Blackie Academic and Professional. New Delhi, India 339.
- Banuelos, G.S. (2006) Phyto-products may be essential for sustainability and implementation of phytoremediation. Environ. Pollut., 144, 19-23.
- Behbahaninia, A., Mirbagheri, S.A., Khorasani, N., Nouri, J., Javid, A.H. (2009) Heavy metal contamination of municipal effluent in soil and plants. J Food Agric. Environ., 7 (3-4), 851-856.
- Chaney, R.L, Angle, J.S., McIntosh, M.S., Reeves, R.D., Li, Y.M., Brewer, E.P., Chen, K.Y., Roseberg, R.J., Perner, H., Synkowski, E.C., Broadhurst, C.L., Wang, S., Baker, A.J.M. (2005) Using hyperaccumulator plants to phytoextract soil Ni and Cd. Z. Naturforsch., 60C, 190-198.
- Gajewska, K., Sklodowska, M. (2007) Effect of nickel on ROS content and antioxidative enzyme activities in wheat leaves. Biometals., 20, 27-36.
- Ghosh, M., Singh, S.P. (2005) A review on phytoremediation of heavy metals and utilization of its by-products. Appl. Ecol. Environ. Res., 3(1), 1-18.
- Jocsak, I., Vegvari, G.Y., Droppa, M. (2005) Heavy metal detoxification by organic acids in barley seedlings. Acta. Biol. Szeged., 49, 99-101
- Hall, J.L. (2002) Cellular mechanisms for heavy metal detoxification and tolerance. J. Exp. Bot., 53, 1-11.
- Iqbal, M.Z., Rahmati, K. (1992) Tolerance of Albizia lebbeck to Cu and Fe application. Ekologia., 11, 427-430.
- Kukier, U., Chaney, R.L. (2000) Influence of the zinc hyperaccumulator. Can. J. Soil. Sci., 80, 581-593.
- Lasat, M.M. (2002) Phytoextraction of toxic metals -A review of biological mechanisms. J. Environ. Qual., 31, 109-120.
- Lindsay, W.L. (1974) Role of chelation in micronutrient availability in Plant Roots and its Environment. ed. FW Carson Univ press of Virginia Charlottesville VA USA 507-24.
- Leyval, C., Singh, B.R., Joner, E.J. (1995) Occurrence and infectivity of arbuscular mycorrhizal fungi in some Norwegian soils influenced by heavy metals and soil properties. Water Air Soil Poll., 83, 203-216.
- McGrath, S.P., Zhao, F.J., Lombi, E. (2002) Phytoremediation of metals, metalloids, and radionuclides. Adv. Agron., 75, 1-56.
- Macnair, M.R., Tilstone, G.H., Smith, S.E. (2000) The genetics of metal tolerance and accumulation in higher plants. In: Phytotremediation of contaminated soil and water (Eds.: N. Terry, G. Banuelos), CRC Press, LLC 235-250.
- National Research Council (NRC) (2005) Mineral Tolerance of Animals. Second Edition The National Academies Press Washington DC 496.
- Nieboer, E., Richardson, D.H.S. (1980) The replacement of the nondescript term 'heavy metal' by a biologically and chemically significant classification of metal ions. Environ. Pollut. (Series B), 1, 2-26.
- Pandolfini, T., Gabbrielli, R., Comparini, C. (1992) Nickel toxicity and peroxidase activity in seedlings of Triticum aestivum L. Plant Cell Environ., 15, 719-725.
- Peralta, J.R., Gardea-Torresdey, J.L., Tiemann, K.J., Gomez, E., Arteaga, S., Rascon, E., Parsons, J.G. (2000) Study of the effects of heavy metals on seed germination and plant growth on alfalfa plant (Medicago sativa) grown in solid media. Proceedings of the 2000 conference on Hazardous Waste Research, Denver, Colorado, May 23-24. P. 135-140.
- Rao, K.V.M., Sresty, T.V.S. (2000) Antioxidative parameters in the seedlings of pigeon pea (Cajanus cajan (L.) Mullspaugh) in response to Zn and Ni stresses. Plant Sci., 157, 113-128.
- Reichman, S.M. (2002) The responses of plants to metal toxicity: a review focusing on copper, manganese and zinc. The Australian Minerals and Energy Environment Foundation 54.
- Seregin, I.V., Kozhevnikova, A.D. (2006) Physiological role of nickel and its toxic effects on higher plants. Russ. J. Plant Physiol., 53, 257-277.
- Turnau, K. (1998) Heavy metal content and localization in mycorrhizal Euphoria cyparission from zinc wastes in Southern Poland. Acta Soci. Bot. Poloniae., 67, 105-113
- Welch, R.M. (1995) Micronutrient nutrition of plants. Crit. Rev. Plant Sci., 14, 49-82.
- Woolhouse, H.W. (1983) Toxicity and tolerance in the responses of plants to metals. Encyclopaedia of Plant Physiology Springer-Verlag Berlin 12C, 245-300.
- http://www.lenntech.com/periodic/water/nickel/nickel-and-water.htm>, dt. 28.4.2012