Effect of Exogenous Trehalose on Physiological Responses of Wheat Plants Under Drought Stress

Автор: Ebtesam Ahmed Qaid

Журнал: Журнал стресс-физиологии и биохимии @jspb

Статья в выпуске: 4 т.16, 2020 года.

Бесплатный доступ

Drought stress causes physiological changes in plant morphological growth and development. The protective role of trehalose (Tre) was investigated through exogenously applied to seedlings of wheat cv. Sakha 93 plants. Pots experiment were divided into four groups: control, Tre treatment, drought stress and drought stress with Tre treatment. Samples were collected in two stages after 7 and 14 days from drought stress to determine the fresh weight, dry weight, chlorophyll pigments, relative water content, electrolytic leakage, proline, malondialdehyde, antioxidant enzyme activities, and carbohydrates content. Drought stress reduced many growth and physiological characters. It significantly increased specific activities of guaiacol peroxidase (GPX) and ascorbate peroxidase (APX) and significantly decreased the catalase (CAT) activity. It caused significantly increased in the Tre content while reduced sucrose and starch contents. Combination exogenous applied Tre (40 mM) with drought stress improved some growth parameters and photosynthetic pigments. Application of Tre markedly decreased proline and malondialdehyde contents, GPX; APX activities whereas increased CAT activity. Tre treatment appeared increased in the internal Tre content, on the other hand; exogenous Tre maintained the sucrose and starch contents in the seedlings of wheat plants under drought stress. The results concluded that applied Tre alleviated the adverse effect of drought stress on wheat plants by enhancing the antioxidant defense system and conservation of the membrane stability.

Еще

Alleviate, Antioxidant Enzymes, Combination, Morphological, Physiological, Protective

Короткий адрес: https://sciup.org/143173860

IDR: 143173860

Список литературы Effect of Exogenous Trehalose on Physiological Responses of Wheat Plants Under Drought Stress

  • Ahmed, H. E., Kord, M. A., Youssef, H. A., Qaid, E. A., (2016). Exogenous application of trehalose improves the physiological status of wheat cv. Giza 168 grown under stress. Egypt. J. Bot. 56(3), 627-646.
  • Ahmed, H.E., Youssef, E.A., Kord, M.A., Qaid, E.A., (2013). Trehalose accumulation in wheat plant promotes sucrose and starch biosynthesis. Jordan J Biol Sci. 6, 143–150
  • Alam, M.M., Hasanuzzaman, M. Nahar, K. Fujita, M., 2013. Exogenous salicylic acid ameliorates short-term drought stress in mustard (Brassica juncea L.) seedlings by up-regulating the antioxidant defense and glyoxalase system. Aust J Crop Sci. 7, 1053-1063.
  • Alam, M.M., Nahar, K., Hasanuzzaman, M., Fujita, M., (2014). Trehalose-induced drought stress tolerance: A comparative study among different Brassica species. Plant Omics J. 7, 271-283.
  • Aldesuquy, H., Ghanem, H., (2015). Exogenous salicylic acid and trehalose ameliorate short term drought stress in wheat cultivars by upregulating membrane characteristics and antioxidant defense system. J. Hortic. 2, 2–10.
  • Ali, Q. (2011). Exogenous use of some potential organic osmolytes in enhancing drought tolerance in maize (Zea mays L.). http://core.kmi.open.ac.uk/display/12115108.
  • Ali, Q., Ashraf, M., (2011). Induction of drought tolerance in maize (Zea mays L.) due to exogenous application of trehalose: growth, photosynthesis, water relations and oxidative defense mechanism. J. of Agronomy and Crop Sci. 197, 258-271.
  • Bae, H., Herman, E. Sicher, R., (2005). Exogenous trehalose promotes non-structural carbohydrate accumulation and induced chemical detoxification and stress response proteins in Arabidopsis thaliana grown in liquid culture. Plant Sci. 168, 1293-1301.
  • Balla, K., Rakszegi, M., Li, Z., Bakes, F., Bencze, S., Veisz, O., (2011). Quality of water winter wheat in relation to heat and drought shock after anthesis. Czech J. Food Sci. 29 (2), 117–128.
  • Bates, L. S., Waldren, R. P., Teare, I. D., (1973). Rapid determination of free proline for water-stress studies. Plant and Soil. 39, 205-207.
  • Bergmeyer, H. U., Bernt, E. M. (1974). “Methods of Enzymatic Analysis”. Bergmeyer HU. (Ed) New York, Academic Press, 2nd Edition: 1205-1212
  • Candan, N. and Tarhan, L. (2003). The correlation between antioxidant enzyme activities and lipid peroxidation levels in Mentha pulegium organs grown in Ca2+, Mg2+, Cu2+, Zn2+ and Mn2+ stress conditions. Plant Science. 163: 769-779.
  • Chang, B., Yang, L., Cong, W., Zu, Y., Tang, Z. (2014). The improved resistance to high salinity induced by trehalose isassociated with ionic regulation andosmotic adjustment in Catharanthus roseus. Plant Physiol. Biochem. 77, 140–148
  • Cižmárik, J., Hrobonová, K., Lehotay, J., (2004). Determination of monosaccharides and disaccharides in honey by ion-exchange high performance chromatography. Acata Facultatis Pharmaceuticae Universitatis Comeniavae. 51, 73-78
  • Dhindsa, A. R. S., Matowe, W., (1981). Drought tolerance in two mosses: correlated with enzymatic defense against lipid peroxidation. J. Exp. Bot. 32, 79-91.
  • Duman, F., Aksoy, A., Aydin, Z., Temizgul, R., (2011). Effects of exogenous glycinebetaine and trehalose on cadmium accumulation and biological responses of an aquatic plant (Lemna gibba L.). Water, Air and Soil Pollution. 217, 545-556.
  • Elbein, A. D., Pan, Y. T., Pastuszak, I., Carroll, D. (2003). New insights on trehalose: a multifunctional molecule. Glycobiology, 13, 17R-27R.
  • Farooq, M., Wahid, A., Lee, D. J., Cheema, S. A., Aziz, T., (2010). Comparative time course action of the foliar applied glycinebetaine, salicylic acid, nitrous oxide, brassinosteroids and spermine in improving drought resistance of rice. J. Agron. Crop Sci. 196, 336– 345.
  • Fernandez, J. M. G., Mellet, C. O., Blanco, J. L. J., Mota, J. F., Gadelle, A., Sarguet, A.C., Defaye, J., (2010). Isothiocyanates and cyclic thiocarbamates of α,α′- trehalose, sucrose, and cyclo malto oligosaccharides. Carbohydrate research, 268(1), 57-71.
  • Ferreira, J. C., Paschoalin, V. M. F., Panek, A. D. and Trugo, L. C (1997). Comparison of three different methods for trehalose determination in yeast extract. Food Chem. 60: 251- 254
  • Gancedo, C., Flores, C. L. (2004). The importance of a functional trehalose biosynthetic pathway for the life of yeasts and fungi. FEMS Yeast Res. 4, 351–359
  • Garg, A. K., Kim, J. K., Owens, T. G., Ranwala, A. P., Do Choi, Y., Kochian, L.V., Wu, R. J., (2002). Trehalose accumulation in rice plants confers high tolerance levels to different abiotic stresses. Proceedings of National Academy of Sci. 99, 15898-15903.
  • Garg, N., Manchanda, G., (2009). ROS generation in plants: boon or bane? Plant Biosyst. 143, 8–96.
  • Gilley, A., Fletcher, R. A. (1997). Relative efficacy of paclobutrazol, propiconazole and tetraconazole as stress protectants in wheat seedlings. J. of Plant Growth Regul. 21, 169-175.
  • Glassop, D., Roessner, U., Bacic, A., Bonnett, G.D., (2007). Changes in the Sugarcane metabolome with stem development: are they related to sucrose accumulation? Plant Cell Physiol. 48, 573–584
  • Grotelueschen, R. D. and Smith, D. (1967). Determination and identification of nonstructural carbohydrates removed from grass and legume tissue by various sulfuric acid concentrations, takadiastase and water, J. Agr. Food Chem. 15; 1048-1051
  • Gupta, A. K., Kaur, N., (2005). Sugar signalling and gene expression in relation to carbohydrate metabolism under abiotic stresses in plants. J. Biosci. 30, 761-776.
  • Hernandez, J. A., Mullineaux, P., Sevilla, F. (2000). Tolerance of pea (Pisum sativum L.) to long term stress is associated with induction of antioxidant defenses. Plant cell & Environment 23: 853-862
  • Ibrahim, H. A., Abdellatif, Y. M. R., (2016). Effect of maltose and trehalose on growth, yield and some physiological components of wheat plant under water stress. Annal of Agricultural Science, 61(2), 267-274.
  • Ilhan, S., Ozdemir, F., Bor, M. (2014). Contribution of trehalose biosynthetic pathway to drought stress tolerance of Capparis ovata Desf. Plant Biol. 17, 402–407
  • Jones, M. M., Turner, N. C., (1978). Osmotic adjustment in leaves of sorghum in response to water deficit. Plant Physiol. 61, 122–126.
  • Li, Z. G., Luo, L. J., Zhu, L. P., (2014). Involvement of trehalose in hydrogen sulphide donor sodium hydrosulfide-induced the acquisition of heat tolerance in maize (Zea mays L.) seedlings. Botanical Studies. 55, 20-31.
  • Liu, Y. L., Guo, K., Fan, D., Li, G., (2011). Effect of drought on pigments, osmotic adjustment and antioxidant enzymes in six woody plant species in Karst habitats of southwestern China. J. Environ. Exp. Bot. 71, 174–183.
  • Lowry, O. H., Rosenbrugh, N. J., Farr, A. L. Randall, R. J., (1951). Protein measurement with the Folin phenol reagent. J. Biol. Chem. 193, 265-275.
  • Luo, Y., Li, F., Wang, G. P., Yang, X. H. and Wang, W., (2010). Exogenously-supplied trehalose protects thylakoid membranes of winter wheat from heat-induced damage. Biol. Plant. 54, 495–501.
  • Ma, C., Wang, Z., Kong, B., Lin, T. (2013). Exogenous trehalose differentially modulate antioxidant defense system in wheat callus during water deficit and subsequent recovery. Plant Growth Regul. 70, 275–285.
  • Metzner, H., Rau, H., Senger, H., (1965). Untersuchungen Zur Synchronisierbarkeit einzelner pigment-mangel mutanten von chlorella. Planta. 65, 186-194.
  • Mostofa, M. G., Hossain, M. A., Fujita, M., Tran, L. P. (2005). Physiological and biochemical mechanisms associated with trehalose-induced copper-stress tolerance in rice. Scientific reports, 5, 11433..
  • Nahar, K., Hasanuzzaman, M., Alam, M. M., Fujita, M. (2013). Exogenous glutathione-induced drought stress tolerance in Vigna radiate seedlings through enhanced antioxidant defense and methylglyoxal system. Interdrought IV Conference September 02- September 09, 2013, Perth, Australia
  • Nakano, Y., Asada, K., (1980). Spinach chloroplasts scavenge hydrogen peroxide on illumination. Plant Cell Physiol. 21, 1295-1307.
  • Nounjan, N., Nghia, P. T., Theerakulpisut, P., (2012). Exogenous proline and trehalose promote recovery of rice seedlings from salt-stress and differentially modulate antioxidant enzymes and expression of related genes. J. Plant Physiol. 169, 596-604
  • Quan, R., Shang, M., Zhang, H., Zhao, Y., Zhang, J. (2004). Engineering of enhanced glycine betaine synthesis improves drought tolerance in maize. Plant Biotechnol. J. 2: 477- 486
  • Ranwala, A. P., Miller, W. B., (2009). Comparison of the dynamics of non-structural carbohydrate pools in cut tulip stems supplied with sucrose or trehalose. Postharvest Biology and Technol. 52, 91–96.
  • Rapacz, M., Kos´cielniak, J., Jurczyk, B., Adamska,A., Wo´ jcik, M., (2010). Different patterns of physiological and molecular response to drought in seedlings of malt- and feed-type barleys (Hordeum vulgare). J. Agron. Crop Sci. 196, 9–19.
  • Ranwala, A. P., Miller, W. B., (2009). Comparison of the dynamics of non-structural carbohydrate pools in cut tulip stems supplied with sucrose or trehalose. Postharvest Biology and Technol. 52, 91–96.
  • Rauf, M., Munir, M., Hassan, M., Ahmad, M., Afzal, M., (2007). Performance of wheat genotypes under osmotic stress at germination and early seedling growth stage. Afr J Agric Res. 6, 971-975.
  • Sorial, M. E., El-Gamal, S. M., Gendy, A. A. (2010). Response of sweet basil to jasmonic acid application in relation to different water supplies. Biosci Res. 7, 39-47.
  • Stolker, R. (2010). Combating abiotic stress using trehalose. M.Sc. Thesis, Wageningen University and Research Centre.
  • Valentovic, P., Luxova, M., Kolarovic, L., Gasparikova, O. (2006). Effect of osmotic stress on compatible solutes content, membrane stability and water relation in two maize cultivars. Plant Soil & Environment 52: 186-191
  • Velikova, V., Yordanov, I., Edreva, A., (2000). Oxidative stress and some antioxidant systems in acid rain-treated bean plants: protective roles of exogenous polyamines. Plant Sci. 151, 59-66.
  • Wingler, A., Fritzius, T., Wiemken, A., Boller, T. and Aeschbacher, R.A. (2000). Trehalose induces the ADP-glucosepyrophosphorylase gene APL3, and starch synthesis in Arabidopsis. Plant Physiol. 124, 105-114.
  • Zeid, I. M., (2009). Trehalose as osmoprotectant for maize under salinity-induced stress. Research J. of Agri. and Biol. Sci. 5, 613-622.
  • Zhang, L. X., Li, S. X., Zhang, H., Liang, Z. S., (2007). Nitrogen rates and water stress effects on production, lipid peroxidation and antioxidative enzyme activities in two maize (Zea mays L.) genotypes. J. Agron. Crop Sci. 193, 387–397.
  • Zhu, J. K., (2002) Salt and drought stress signal transduction in plants. Annu. Rev. Plant Physiol. Plant Mol. Biol. 53, 247– 273.
Еще
Статья научная