Effect of liraglutide dose on efficacy of correcting microcirculatory disorders in absolute insulin deficiency of albino rats

Автор: Daria D. Lagutina, Tatyana V. Stepanova, Angelina A. Savkina, Alexey N. Ivanov

Журнал: Saratov Medical Journal @sarmj

Статья в выпуске: 3 Vol.2, 2021 года.

Бесплатный доступ

The objective was to study the dose-dependent effects of glucagon-like peptide-1 receptor agonist, liraglutide, on microcirculation in white rats under the alloxan-induced insulin deficiency. Materials and Methods. Our study was carried out on 70 white rats, divided into four groups: 20 intact control animals; 20 animals of the comparison group with alloxan-induced diabetes; 10 animals with insulin deficiency, injected with liraglutide at a dose of 0.2 mg/kg per day (treatment group No. 1); and 20 animals with insulin deficiency treated with liraglutide at a dose of 0.4 mg/kg per day (treatment group No. 2). Diabetic status, skin perfusion of the posterior limb and mechanisms of blood flow modulation were assessed in all groups of animals. Results. It was established that administering liraglutide at a dose of 0.4 mg/kg per day allowed achieving complete normalization of carbohydrate metabolism in rats with alloxan-induced insulin deficiency, thereby more effectively improving the state of microcirculation, compared with a dose of 0.2 mg/kg per day. Conclusion. The efficacy of correcting the microcirculatory disorders with liraglutide correlates with correcting the carbohydrate metabolism in rats with insulin deficiency and depends on liraglutide dose. The dose-dependent effect is achieved by the endothelial mechanism of flow modulation in microcirculation. However, the restoration of the vascular tone neurogenic component is independent of liraglutide dose.

Еще

Diabetes mellitus, microcirculation, liraglutide, endothelial dysfunction, angiopathy

Короткий адрес: https://sciup.org/149139009

IDR: 149139009   |   DOI: 10.15275/sarmj.2021.0304

Список литературы Effect of liraglutide dose on efficacy of correcting microcirculatory disorders in absolute insulin deficiency of albino rats

  • Dedov II, Shestakova MV, Vikulova OK. Epidemiology of diabetes mellitus in the Russian Federation: Clinical and statistical analysis based on the Federal Registry on Diabetes Mellitus. Diabetes Mellitus 2017; 20 (1): 13-41. [In Russ.]
  • Strain WD, Paldánius PM. Diabetes, cardiovascular disease and the microcirculation. Cardiovasc Diabetol 2018; 17 (1): 57. https://doi.org/10.1186/s12933-018-0703-2
  • Dal Canto E, Ceriello A, Rydén L, et al. Diabetes as a cardiovascular risk factor: An overview of global trends of macro and micro vascular complications. Eur J Prev Cardiol 2019; 26 (2): 25-32. https://doi.org/10.1177/2047487319878371
  • Bjerg L, Hulman A, Carstensen B, et al. Effect of duration and burden of microvascular complications on mortality rate in type 1 diabetes: An observational clinical cohort study. Diabetologia 2019; 62 (4): 633-43.
  • Knapp М, Tu X, Wu R. Vascular endothelial dysfunction, a major mediator in diabetic cardiomyopathy. Acta Pharmacol Sin 2019; 40 (1): 1-8. https://doi.org/10.1038/s41401-018-0042-6
  • Arcaro G, Cretti A, Balzano S, et al. Insulin causes endothelial dysfunction in humans: Sites and mechanisms. Circulation 2002; (105): 576-82. https://doi.org/10.1161/hc0502.103333
  • Zhang X, Shao F, Zhu L, et al. Cardiovascular and microvascular outcomes of glucagon-like peptide-1 receptor agonists in type 2 diabetes: A meta-analysis of randomized controlled cardiovascular outcome trials with trial sequential analysis. BMC Pharmacol Toxicol 2018; 19 (1): 58. https://doi.org/10.1186/s40360-018-0246-x
  • Dimitrios P, Michael D, Vasilios K. Liraglutide as adjunct to insulin treatment in patients with type 1 diabetes: A systematic review and meta-analysis. Curr Diabetes Rev 2020; 16 (4): 313‐26. https://doi.org/10.2174/1573399815666190614141918.
  • Simanenkova AV, Makarova MN, Vasina LV, et al. Glucagon-like peptide-1 receptor agonist reduces endothelial dysfunction in type 2 diabetes patients. Regional Blood Circulation and Microcirculation 2018; 17 (2): 57-63. [In Russ.] https://doi.org/10.24884/1682-6655-2018-17-2-57-63
  • Bukhtiyarova IP, Drogovoz SM, Shchekina EG. Investigation of hypoglycemic properties of raleukin on an alloxan diabetes model in rats. Bulletin of Kazakh National Medical University 2014; (4): 301-4. [In Russ.]
  • Zhang Q, Xiao X, Zheng J, et al. Liraglutide protects cardiac function in diabetic rats through the PPARα. Biosci Rep 2018; 38 (2): BSR20180059. https://doi.org/10.1042/BSR20180059
  • Ivanov AN, Antipova ON, Savkina AA, et al. Effect of liraglutide on microcirculation in rats with experimental diabetes mellitus associated with absolute insulin deficiency. Regional Blood Circulation and Microcirculation 2020; 19 (4): 61-9. [In Russ.] https://doi.org/10.24884/1682-6655-2020-19-4-61-69
  • Sukumaran V, Tsuchimochi H, Sonobe T, et al. Liraglutide treatment improves the coronary microcirculation in insulin resistant Zucker obese rats on a high salt diet. Cardiovasc Diabetol 2020; (19): 24. https://doi.org/10.1186/s12933-020-01000-z
  • Popykhova EB, Stepanova TV, Lagutina DD, et al. Role of diabetes in the onset and development of endothelial dysfunction. Problems of Endocrinology 2020; 66 (1): 47-55. [In Russ.] https://doi.org/10.14341/probl12212
  • Dos Santos JM, Tewari S, Mendes RH. The role of oxidative stress in the development of diabetes mellitus and its complications. J Diabetes Res 2019; (5): 4189813. https://doi.org/10.1155/2019/4189813
  • Faber R, Zander M, Pena A, et al. Effect of the glucagon-like peptide-1 analogue liraglutide on coronary microvascular function in patients with type 2 diabetes – A randomized, single-blinded, cross-over pilot study. Cardiovasc Diabetol 2015; (14): 41. https://doi.org/10.1186/s12933-015-0206-3
  • Ishibashi Y, Matsui T, Takeuchi M, et al. Glucagon-like peptide-1 (GLP-1) inhibits advanced glycation end product (AGE)-induced upregulation of VCAM-1. Biochem Biophys Res Commun 2010; (391): 1405-8. https://doi.org/10.1016/j.bbrc.2009.12.075
  • Chai W, Dong Z, Wang N, et al. Glucagon-like peptide 1 recruits microvasculature and increases glucose use in muscle via a nitric oxide-dependent mechanism. Diabetes 2012; (62): 888-96. https://doi.org/10.2337/db11-1073
  • Krupatkin AI, Sidorov VV. Laser Doppler flowmetry of blood microcirculation: A physician’s guide. Moscow: Meditsina, 2005; 256 p. [In Russ.]
  • Ivanov AN, Grechikhin AA, Norkin IA, et al. Methods of endothelial dysfunction diagnosis. Regional Blood Circulation and Microcirculation 2014; 13 (4): 4-11. [In Russ.] https://doi.org/10.24884/1682-6655-2014-13-4-4-11
Еще
Статья научная