Effect of metal ions, chelating agent and SH-reagents on radish (Raphanus sativus L.) root -amylase

Автор: Sarowar Jahan M.G., Shaela Pervin M., Shariar Shovon M., Dev Sharma S.C., Roy Narayan, Habibur Rahman M.

Журнал: Журнал стресс-физиологии и биохимии @jspb

Статья в выпуске: 3 т.8, 2012 года.

Бесплатный доступ

Metal ions play vital roles in enzymes. They may also show sensitivity to various sulfhydryl reagents and chelating reagents. Effect of some metal ions, EDTA and sulfhydryl reagents on the activity of partially purified β-amylase of radish root were studied. Amylolytic activity of purified enzyme was increased substantially in the presence of Ca2+, Mg2+, and Zn2+. Some other divalent cations Cu2+, Pb2+, Sn2+, and Hg2+ almost completely ceased the enzyme activity. Cobalt (II), Manganese (II), and Iron (III) exhibited moderate activating effects on the activity. Of the monovalent cations, Na+ and Ag+ reduced the β-amylase activity, while K+ increased. The chelating agent EDTA was found to be effective in the enzyme. Sulfhydryl reagents, Iodoacetic acid and N-Ethylmaleimide showed marginal inhibitory effect, but p-hydroxymercuribenzoic acid (PCMB) almost completely stopped the enzyme activity. The addition of thiol compounds such as cysteine could reverse the inhibitory effect of heavy metals and PCMB. The results indicate that sulfhydryl groups of radish root β-amylase were essential for the activity although it is not clear whether the sulfhydryl groups were directly involved in catalysis.

Еще

Β-amylase, chelating agent, metal ions, radish, sulfhydryl reagent

Короткий адрес: https://sciup.org/14323661

IDR: 14323661

Список литературы Effect of metal ions, chelating agent and SH-reagents on radish (Raphanus sativus L.) root -amylase

  • Arai, T., Kawabta, A. and Taniguchi, H. (1991). Purification and some properties of Ichoimo β-Amylase. Agric. Biol. Chem., 55(2), 399-405.
  • Badal C., Saha T. and Zeikus J. (1989). Improved method for preparing high maltose conversion syrups. Biotechnology and Bioengineering, 34, 299-303
  • Bardwell, J. (2005). Thiol modifications in a snapshot. Nature Biotechnol., 23, 42-43.
  • Boivin P. (1997). Les enzmyes en brasserie. In Multon, J.L. (ed.), Enzymes en Agroalimentarie. Colletion Science et Techniques Agroalimenaires, Londres, Paris, New York, pp. 138-168.
  • Diaz, A., Sieiro, C. and Villa, T.G. (2003). Production and partial characterization of a β-amylase by Xanthophyllomyces dendrorhous. Lett. Applied Microbiol., 36, 203-207.
  • Dicko M.H., Searle-Van L., Hilhorst R. and Traore A.S. (2000). Extration, Partial purification and Characterisation of β-amylase from the bulb of G. Klattianus. Biosource Technology, 73, 183-185
  • Dogan, S., Turan, P., Dogan, M., Alkan, M. and Arslan, O. (2007). Inhibition kinetics of polyphenol oxidase by glutamic acid. Eur. Food Res. Technol., 225, 67-73.
  • Giles, N.M., Giles, G.I. and Jacob, C. (2003). Multiple roles of cysteine residue in biocatalysis. Biochem. Biophys. Res. Commun., 300, 1-4.
  • Gupta, R., Gigars, P., Mohapatra, H., Goswami, V.K. and Chauhan, B. (2003). Microbial a-amylase: A biotechnological perspective. Process. Biochem., 38, 1599-1616.
  • Kiran, K.K. and Chandra T.S. (2008). Production of surfactant and detergent-stable, halophilic and alkalitolerant alpha-amylase by a moderately halophilic Bacillus sp. Strain TSCVKK. Applied Microbiol. Biotechnol., 77, 1023-1031.
  • Laemmli, U.K. (1970). Cleavage of structural proteins during the assembly of head of bacteriophage T4. Nature, 227, 680-685.
  • Leveque, E., Haye, B. and Belarbi, A. (2000). Cloning and expression of an a-amylase encoding gene from the hyperthermophilic archaebacterium Thermococcus hyclrothermalis and biochemical characterization of the recombinant enzyme. FEMS Microbiol. Lett., 186, 67-71.
  • Li, W.F., Zhou, XX. and Lu, P. (2005). Structural features of thermozymes. Biotechnol. Adv., 23, 271-281.
  • Lo, H.F., Lin, L.L., Chen, H.L., Hsu, H.H. and Chang, C.T. (2001). Enzymatic properties of a SDS-resistant Bacillus sp. TS-23 a-amylase produced by recombinant Escherichia coli. Process Biochem., 36, 743-750.
  • Lowry, O.H., Roserbrough, N.J., Farr A.L. and Randall, R.J. (1951). Protein measurement with the follin phenol reagent. J. Biol. Chem., 193, 265-275.
  • Mar, S.S., Mori, H., Lee, H.J., Fukuda, K. and Kimura, A. (2003). Purification, characterization and sequence analysis of two alpha-amylase isoforms from azuki bean, Vigna angularis, showing different affinity towards beta-cyclodextrin sepharose. Biosci. Biotechnol. Biochem., 67, 1080-1093.
  • Marshal, J.J. (1975). Inhibition of plant and bacterial β-amylases. Mol. Cell. Biochem., 7, 127-129.
  • Nelson, N. (1944). A photometric adaptation of the Somogyi method for the determination of glucose. J. Biol. Chem., 153, 375-380.
  • Pandey, A., Nigam, P., Soccol, C.R., Soccol, V.T., Singh, D. and Mohan, R. (2000). Advances in microbial amylases. Biotechnol. Applied Biochem., 31,135-152.
  • Parkin, K.L. (1993). Environmental Effects on Enzyme Activity. In Nagodawithana, T. and Reed, G. (ed.), Enzymes in Food Processing, 3rd Edn., Academic Press Inc., San Diego, pp. 480.
  • Priest F.G. (1984). Commercialisation in Extracellular Enzymes. In Cole, S. (ed.), Applied Microbiology, Vol.19, American Society of Microbiology, Washington DC, pp. 32-50
  • RamaChandran, S. Patel, A.K., Nampoothiri, K.M., Chandran, S., Szakacs G., Soccol, C.R. and Pandey, A. (2004). Alpha amylase from a fungal culture grown on oil cakes and its properties. Braz. Arch. Biol. Technol., 47, 309-317.
  • Somogyi, M. (1952). Note on sugar determination. J. Biol. Chem., 195, 19-23.
  • Tatara, Y., Yoshida, T. and Ichishima, E. (2005). A single free cysteine residue and disulphide bond contribute to the thermostability of Aspergillus saitoi 1, 2-a-omannosidase. Biosci. Biotechnol. Biochem., 69, 2101-2108.
  • Thoma, J.A., Sprandlin J.E. and Dygert, S. (1971). Plant and animal amylases. In Boyer, P.S., (ed.), The Enzymes, Academic Press, New York, pp.115-189.
  • Trachuk, R. and Tipples K.H. (1966). Wheat β-amylase. II. Characterization. Cereals Chem., 43, 62-79.
  • Vikso-Nelson, A., Christensen, T.M.I.E., Bojko, M. and Marcussen, J. (1997). Purification and Characterization of β-amylase from leaves of potato (Salanum tuberosum). Physiol. Plant., 99, 190-196.
  • Yamasaki, K., Yokoyama, H., Miyano, K., Nunoura, Y., Higashihara, M., Kitahata, S., Yoneda, K. and Umezawa, C. (1989). Purification and characterization of β-amylase from ginseng. Chem. Pharm. Bull., 37, 973-978.
Еще
Статья научная