Effect of some stresses on free proline content during pigeonpea (Cajanas cajan) seed germination

Автор: Bhamburdekar S.B., Chavan P.D.

Журнал: Журнал стресс-физиологии и биохимии @jspb

Статья в выпуске: 3 т.7, 2011 года.

Бесплатный доступ

Plants accumulate proline under a variety of stress conditions thereby preventing stress-caused damages. The proline accumulation in germinating seeds of pigeonpea in response to NaCl, Boron and Aluminium treatments were studied. Results showed increased accumulation of proline in salinity stressed germinating seeds. As compare to 100 ppm boron, 10 and 50 ppm of boron treatments promoted proline levels at different stages of seed germination. The content of proline was found to be induced by all aluminium concentrations particularly at 48, 72 and 120 hrs. of seed germination. Whereas reverse pattern of proline accumulation was observed at 96 hrs stage under all studied stresses.

Еще

Aluminium, boron, pigeonpea, proline, seed germination, nacl

Короткий адрес: https://sciup.org/14323535

IDR: 14323535

Список литературы Effect of some stresses on free proline content during pigeonpea (Cajanas cajan) seed germination

  • Ashraf, M. and Foolad, M.R. (2007) Roles of glycine betaine and proline in improving plant abiotic stress resistance. Environmental and Experimental Botany, 59(2): 206-216.
  • Bates, L.S.; Waldern, R.P. and Teare, T.D. (1973) Rapid determination of proline for water stress studies. Plant Soil, 39:205-207.
  • Delauney A.J, Verma D.P.S (1993) Proline biosynthesis and degradation in plants. Plant J., 4: 215-223.
  • Durgaprasad, K.M.R., Muthukumarswamy, M. and Panneerselvum, R. (1996) Changes in protein metabolism induced by NaCl salinity in soybean seedlings. Indian Jr.Plant Physiol, 1: 98-101.
  • Eraslan, F., Inal, A., Gunes, A., Alpaslan, M. (2007) Boron toxicity alters nitrate reductase activity, proline accumulation, memberane permeability and mineral constituents of tomato and Pepper plants. Journal of Plant Nutrition, 30: 981-994.
  • Guo, T., Zhang, G., Zhou, M., Wu, F. and Chen, J. (2004) Effects of aluminium and cadmium toxicity on growth and antioxidant enzyme activities of two barley genotypes with different Al resistance. Plant and Soil, 258 (1): 241-248.
  • Hare, P.D. and Cress, W.A. (1997) Metabolic implications of stress-induced proline accumulation in plants. Plant Growth Regulation, 21: 79-102.
  • Hare, P.D., Cress, W.A., Van Staden, J. (1998) Dissecting the roles of osmolyte accumulation during stress. Plant Cell Envir., 21: 535-553.
  • Herrera-Rodriguez, M.B., Gonzalez-Fontes, A., Rexach, J., Camacho-Cristobal, J.J., Maldonado, J.M. and Navarro-Gochicoa, M.T. (2010) Role of boron in vascular plants and response mechanism to boron stresses. Plant Stress, 4(2): 115-122.
  • Herrera-Rodriguez, M.B., Perez-Vicente, R. and Maldonado, J.M. (2007). Expression of asparagines synthetase genes in sunflower (Helianthus annus) under various environmental stresses. Plant Physiology and Biochemistry, 45: 33-38.
  • Iyer, S. and Caplan, A. (1998) Products of proline catabolism can induce osmotically regulated genes in rice. Plant Physiol., 116: 203-211.
  • Klimashevskii, E.L. (1984) Akad.S-Kh Nauk. Im VI Lenina, 10: 3-5.
  • Kochiana, L.V., Pineros, M.A. and Hoekenga, O.A. (2005). The physiology, genetics and molecular biology of plant aluminium resistance and toxicity. Plant Soil, 274: 175-195.
  • Kuznetsov, V.V. and Shevyakova, N.I. (1997) Stress responses of tobacco cells to high temperature and salinity. Proline accumulation and phosphorilation of polypeptide. Physiol. Plant, 100: 320-326.
  • Madan, S., Nainawatee, H. S., Jain, R. K. and Chowdhury, J. B. (1995) Proline and proline metabolizing enzymes in in-vitro selected NaCl-tolerant Brassica juncea L. under salt stress. Ann. Bot., 76: 51-57.
  • Maggio, A., Miyazaki, S., Veronese, P., Fujita, T., Ibeas, J.I., Damsz, B., Narasimhan, M.L., Hasegawa, P.M., Joly, R.J. and Bressan, R.A. (2002) Does proline accumulation play an active role in stress-induced growth reduction? Plant J., 31: 699-712.
  • Murumkar, C.V. (1986) Physiological studies in chickpea (Cicer arietinum L) Ph.D Thesis, Shivaji University, Kolhapur (MH), India.
  • Nathalie, V. and Christian, H. (2008) Proline accumulation in plants: a review. Amino Acids, 35: 753-759.
  • Papadakis, I.E., Dimassi, K.N. Bosabalidis, A.M., Therios, I.N., Patakas, A. and Giannakoula, A. (2003) Boron toxicity in 'Cleementine' mandaris plants grafted on two rootstocks. Plant Science, 166 (2): 539-547.
  • Rahnama, H. and Ebrahimzadeh, H. (2004) The effect of NaCl on proline accumulation in potato seedlings and calli. Acta. Physiologiae Plantarum, 26(3): 263-270.
  • Reid, R. (2007) Update on boron toxicity and tolerance in plants. In: Xu, F., Goldbach, H.E., Brown, P.H., Bell, R.W., Fujiwara, T., Hunt, C.D., Goldberg, S., Shi, L. (Eds). Advances in Plant and Animal Boron Nutrition, Springer, Dordrecht, 83-90.
  • Rhodes, D., Verslues, P.E. and Sharp, R.E. (1999) Role of amino acids in abiotic stress resistance. In (B.K. Singh ed.) "Plant Amino Acids: Biochemistry and Biotechnology", Marcel Dekker, NY, pp. 319-356.
  • Rodrigues da Cruz, F.J., Silva Lobato, A.K., Lobo da Casta, R.C., Santos Lopez, M.J., Borges Neves, H.K., Oliveira Neto, C.F., Silva, M.H.L, Santos Filho, B.G., Lima Junior, J.A. and Okumura, R.S. (2011) Aluminium negative impact on nitrate reductase activity, nitrogen compounds and morphological parameters in Sorghum plants. Australian Journal of Crop Science, 5(6):641-645.
  • Santarius, K.A. (1992) Freezing of isolated thylakoid membranes in complex media. VIII. Differential cryoprotection by sucrose, proline and glycerol. Physiol. Plant, 84: 87-93.
  • Santoro, M.M., Liu, Y., Khan, S.M.A., Hou, L.X. and Bolen, D.W. (1992) Increased thermal stability of proteins in the presence of naturally occurring osmolytes. Biochemistry 31: 5278-5283.
  • Satokopan, V.N., Sankar, M. and Baskaran (1990) Determination of toxicity levels of Al3+ in chickpea (Cicer arietinum L) seedlings. Indian Jr. Plant Physiol., 35:90-94.
  • Singh, G., and Jain, S. (1982) Effect of some growth regulators on certain biochemical parameters during seed development in chickpea under salinity. Indian Jr. Plant Physiol., 25:167-179.
  • Srinivas, V. and Balasubramanian, D. (1995) Proline is a protein-compatible hydrotrope. Langmuir, 11: 2830-2833.
  • Tang, C., Diatloff, E., Rangel, Z. and McGann, B. (2001) Growth response to surface soil acidity of wheat genotypes differing in aluminium tolerance. Plant Soil, 236: 1-10.
  • Taylor, C.B. (1996) Proline and water deficit: ups and downs. Plant Cell, 8: 1221-1224.
  • Valley, S.R., Carrasco, J., Pinochet, D. and Calderini, D.F. (2009) Grain yield above ground and root biomass of Al-tolerant and Al-sensitive wheat cultivars under different soil aluminium concentrations at field conditions. Plant Soil, 318: 299-310.
  • Verbruggen, N., Villarroel, R. and Van Montagu M. (1993) Osmoregulation of a pyrroline-5-carboxylate reductase gene in Arabidopsis thaliana. Plant Physiol., 103: 771-781.
  • Wang, K., Liu, Y., Dong, K., Dong, J., Kang, J. Yang, Q., He, Z. and Sun, Y. (2011) The effect of NaCl on proline metabolism in Saussurea amara seedlings. African Journal of Biotechnology, 10(15): 2886-2893.
  • Yamada, M., Morishita, H., Urano, K., Shiozaki, N., Kazuko, Y.S., Shinozaki, K. and Yoshida, Y. (2005) Effects of proline accumulation in petunias under drought stress. J.Expt.Bot., 56: 1975-1981.
  • Yang, S.L., Lan, S.S. and Gong, M. (2009) Hydrogen peroxide-induced proline and metabolic pathway of its accumulation in maize seedlings. J. Plant Physiol., 166: 1694-1699.
  • Zhu, B.C., Su, J., Chan, M.C., Verma, D.P.S., Fan, Y.L. and Wu, R. (1998) Overexpression of a delta (1)-pyrroline-5-carboxylase synthase gene and analysis of tolerance to water and salt-stress in transgenic rice. Plant Science, 139: 41-48.
Еще
Статья научная