Effect of Stress on Structural Behavior of Periplasmic Membrane In Pathogenic Organism
Автор: Mrunali Patel, Priti Patel
Журнал: Журнал стресс-физиологии и биохимии @jspb
Статья в выпуске: 3 т.17, 2021 года.
Бесплатный доступ
Microorganisms have an assortment of evolutionary adaptations and physiological advancement mechanism which permit them to survive and stay dynamic in face of environmental stress. The examination propose that all the more proficiently coordinating microbial ecology into biological system nature will require more complete integration of microbial physiological ecology, population biology and process ecology. Microorganisms also have genomic and metabolic plasticity to adapt the numerous stressful conditions they come across during their life. They give a remarkable illustration of adaptation to the most diverse environments. There is still plenty to learn on how pathogens react to host imposed stresses, how environmental microorganisms become acclimated to so viably to the continually changing environments, how metabolic changes at last shape their genome and how all the above can be exploited to our advantage, for example preventing food to spoil, improving food safety, performing industrial synthesis with nominal or no contamination. The revealing insight into fundamental parts of microbial reactions to stress can have commonsense consequences in irrelevant fields, for instance in the fix of human sicknesses. The aim is additionally to provide a strong interdisciplinary climate which will give a gathering to the flow of new various thoughts for better understanding microbial physiology under stress. There are a few stress to organisms include osmotic stress, oxidative stress, pH stress, thermal stress, periplasmic stress, and nutrient and starvation stresses. Environmental stresses are commonly active during the cycle of microbial fermentation and have critical impact on microbial physiology. Microorganisms have built up a progression of systems to oppose ecological anxieties. They keep up the honesty and smoothness of cell films by tweaking their configuration and composition, the penetrability and activities of carriers are changed in accordance with control nutrient transport and ion exchange.
Pathogenesis, Resistance mechanism, Stress, Structural behaviour
Короткий адрес: https://sciup.org/143173902
IDR: 143173902
Список литературы Effect of Stress on Structural Behavior of Periplasmic Membrane In Pathogenic Organism
- 1. Suzina, N. E., Mulyukin, A. L., Kozlova, A. N.,Shorokhova, A. P., Dmitriev, V. V., Barinova, E.S., ... & Duda, V. I. (2004). Ultrastructure of restingcells of some non-spore-formingbacteria. Microbiology, 73(4), 435-447.
- Zak, D. R., Holmes, W. E., White, D. C., Peacock,A. D., & Tilman, D. (2003). Plant diversity, soilmicrobial communities, and ecosystemfunction. Ecology, 84(8), 2042-2050.
- Balser, T. C., & Firestone, M. K. (2005). Linkingmicrobial community composition and soilprocesses in a California annual grassland andmixed-conifer forest. Biogeochemistry, 73(2), 395-415.
- Lee, S., Hinz, A., Bauerle, E., Angermeyer, A.,Juhaszova, K., Kaneko, Y., ... & Manoil, C. (2009).Targeting a bacterial stress response to enhanceantibiotic action. Proceedings of the National Academy of Sciences, 106(34), 14570-14575.
- Grubor, B., Meyerholz, D. K., & Ackermann, M. R.(2006). Collectins and cationic antimicrobialpeptides of the respiratory epithelia. Veterinarypathology, 43(5), 595-612.
- Martel, J., Ko, Y. F., Young, J. D., & Ojcius, D. M.(2020). Could nasal nitric oxide help to mitigate theseverity.
- Worlitzsch, D., Tarran, R., Ulrich, M., Schwab, U.,Cekici, A., Meyer, K. C., ... & Döring, G. (2002).Effects of reduced mucus oxygen concentration inairway Pseudomonas infections of cystic fibrosispatients. The Journal of clinicalinvestigation, 109(3), 317-325.
- Fang, F. C., Frawley, E. R., Tapscott, T., &Vázquez-Torres, A. (2016). Discrimination andintegration of stress signals by pathogenicbacteria. Cell host & microbe, 20(2), 144-153.
- Steele, S., Brunton, J., Ziehr, B., Taft-Benz, S.,Moorman, N., & Kawula, T. (2013). Francisellatularensis harvests nutrients derived via ATG5-independent autophagy to support intracellulargrowth. PLoS Pathog, 9(8), e1003562.
- Nairz, M., Ferring-Appel, D., Casarrubea, D.,Sonnweber, T., Viatte, L., Schroll, A., ... & Galy, B.(2015). Iron regulatory proteins mediate hostresistance to Salmonella infection. Cell host µbe, 18(2), 254-261.
- Fang, F. C. (2011). Antimicrobial actions of reactiveoxygen species. MBio, 2(5).
- Ono, S., Goldberg, M. D., Olsson, T., Esposito, D.,Hinton, J. C., & Ladbury, J. E. (2005). H-NS is a partof a thermally controlled mechanism for bacterialgene regulation. Biochemical Journal, 391(2), 203-213.
- Beales, N. (2004). Adaptation of microorganisms tocold temperatures, weak acid preservatives, low pH,and osmotic stress: a review. Comprehensivereviews in food science and food safety, 3(1), 1-20.
- Fernández-Niño, M., Marquina, M., Swinnen, S.,Rodríguez-Porrata, B., Nevoigt, E., & Ariño, J.(2015). The cytosolic pH of individualSaccharomyces cerevisiae cells is a key factor inacetic acid tolerance. Applied and environmentalmicrobiology, 81(22), 7813-7821.
- Hosseini Nezhad, M., Hussain, M. A., & Britz, M. L.(2015). Stress responses in probiotic Lactobacilluscasei. Critical reviews in food science andnutrition, 55(6), 740-749.
- Ju, S. Y., Kim, J. H., & Lee, P. C. (2016). Long-termadaptive evolution of Leuconostoc mesenteroidesfor enhancement of lactic acid tolerance andproduction. Biotechnology for biofuels, 9(1), 1-12.
- Liu, Y., Tang, H., Lin, Z., & Xu, P. (2015).Mechanisms of acid tolerance in bacteria andprospects in biotechnology andbioremediation. Biotechnology advances, 33(7),1484-1492.
- Matsui, R., & Cvitkovitch, D. (2010). Acid tolerancemechanisms utilized by Streptococcusmutans. Future microbiology, 5(3), 403-417.
- He, G., Wu, C., Huang, J., & Zhou, R. (2016). Acidtolerance response of Tetragenococcus halophilus:A combined physiological and proteomicanalysis. Process Biochemistry, 51(2), 213-219.
- Hu, S., Xiao, X., Wu, X., Xia, X., Yu, Y., & Wu, H.(2017). Comparative transcriptomic analysis byRNA-seq of acid tolerance response (ATR) in EHECO157: H7. LWT-Food Science and Technology, 79,300-308.
- Lee, Y., Nasution, O., Choi, E., Choi, I. G., Kim, W.,& Choi, W. (2015). Transcriptome analysis of aceticacid-treated yeast cells identifies a large set ofgenes whose overexpression or deletion enhancesacetic acid tolerance. Applied microbiology andbiotechnology, 99(15), 6391-6403.
- Sandoval, N. R., Mills, T. Y., Zhang, M., & Gill, R. T.(2011). Elucidating acetate tolerance in E. coli usinga genome-wide approach. Metabolicengineering, 13(2), 214-224.
- Zhai Z, Douillard FP, An H, Wang G, Guo X, Luo Y,Hao Y. Proteomic characterization of the acidtolerance response in Lactobacillusdelbrueckii subsp. bulgaricus CAUH1 and functionalidentification of a novel acid stress-related transcriptional regulator Ldb0677. Environ Microbiol.2014;16:1524-1537.
- 24.25. Baker-Austin, C., & Dopson, M. (2007). Life in acid:pH homeostasis in acidophiles. Trends inmicrobiology, 15(4), 165-171.
- Sun, Y. (2016). F 1 F 0-ATPase Functions UnderMarkedly Acidic Conditions in Bacteria.In Regulation of Ca2+-ATPases, V-ATPases and FATPases(pp. 459-468). Springer, Cham.
- Wu, C., Zhang, J., Chen, W., Wang, M., Du, G., &Chen, J. (2012). A combined physiological andproteomic approach to reveal lactic-acid-inducedalterations in Lactobacillus casei Zhang and itsmutant with enhanced lactic acid tolerance. Appliedmicrobiology and biotechnology, 93(2), 707-722.
- Streit, F., Delettre, J., Corrieu, G., & Béal, C. (2008).Acid adaptation of Lactobacillus delbrueckii subsp.bulgaricus induces physiological responses atmembrane and cytosolic levels that improvescryotolerance. Journal of appliedmicrobiology, 105(4), 1071-1080.
- Sohlenkamp, C. (2017). Membrane homeostasis inbacteria upon pH challenge. Biogenesis of fattyacids, lipids and membranes, 1-13.
- Guan, N., Shin, H. D., Chen, R. R., Li, J., Liu, L.,Du, G., & Chen, J. (2014). Understanding of howPropionibacterium acidipropionici respond topropionic acid stress at the level ofproteomics. Scientific reports, 4(1), 1-8.
- Albesa, I., Becerra, M. C., Battán, P. C., & Páez, P.L. (2004). Oxidative stress involved in theantibacterial action of differentantibiotics. Biochemical and biophysical researchcommunications, 317(2), 605-609.
- Goswami, M., Mangoli, S. H., & Jawali, N. (2006).Involvement of reactive oxygen species in the actionof ciprofloxacin against Escherichiacoli. Antimicrobial agents and chemotherapy, 50(3),949-954.
- Kohanski, M. A., Dwyer, D. J., Hayete, B.,Lawrence, C. A., & Collins, J. J. (2007). A commonmechanism of cellular death induced by bactericidalantibiotics. Cell, 130(5), 797-810.
- Wang, X., Zhao, X., Malik, M., & Drlica, K. (2010).Contribution of reactive oxygen species to pathwaysof quinolone-mediated bacterial cell death. Journalof Antimicrobial Chemotherapy, 65(3), 520-524.
- Dwyer, D. J., Camacho, D. M., Kohanski, M. A.,Callura, J. M., & Collins, J. J. (2012). Antibioticinducedbacterial cell death exhibits physiologicaland biochemical hallmarks of apoptosis. Molecularcell, 46(5), 561-572.
- Kalyanaraman, B., Darley-Usmar, V., Davies, K. J.,Dennery, P. A., Forman, H. J., Grisham, M. B., ... &Ischiropoulos, H. (2012). Measuring reactive oxygenand nitrogen species with fluorescent probes:challenges and limitations. Free radical biology andmedicine, 52(1), 1-6.
- Imlay, J. A. (2015). Diagnosing oxidative stress inbacteria: not as easy as you might think. Currentopinion in microbiology, 24, 124-131.
- Raetz, C. R., Reynolds, C. M., Trent, M. S., &Bishop, R. E. (2007). Lipid A modification systemsin gram-negative bacteria. Annu. Rev. Biochem., 76,295-329.
- Grabowicz, M., & Silhavy, T. J. (2017). Envelopestress responses: an interconnected safetynet. Trends in biochemical sciences, 42(3), 232-242.
- Hancock, R. E., & Diamond, G. (2000). The role ofcationic antimicrobial peptides in innate hostdefences. Trends in microbiology, 8(9), 402-410.
- Dalebroux, Z. D., & Miller, S. I. (2014). SalmonellaePhoPQ regulation of the outer membrane to resistinnate immunity. Current opinion inmicrobiology, 17, 106-113.
- Asmar, A. T., Ferreira, J. L., Cohen, E. J., Cho, S.H., Beeby, M., Hughes, K. T., & Collet, J. F. (2017).Communication across the bacterial cell envelopedepends on the size of the periplasm. PLoSBiology, 15(12), e2004303.
- Wood, J. M., Bremer, E., Csonka, L. N., Kraemer,R., Poolman, B., van der Heide, T., & Smith, L. T.(2001). Osmosensing and osmoregulatorycompatible solute accumulation by bacteria. Comparative Biochemistry and PhysiologyPart A: Molecular & Integrative Physiology, 130(3),437-460.
- Walker, V. K., Palmer, G. R., & Voordouw, G.(2006). Freeze-thaw tolerance and clues to thewinter survival of a soil community. Applied andEnvironmental Microbiology, 72(3), 1784-1792.
- Methe, B. A., Nelson, K. E., Deming, J. W., Momen,B., Melamud, E., Zhang, X., ... & Fraser, C. M.(2005). The psychrophilic lifestyle as revealed bythe genome sequence of Colwellia psychrerythraea34H through genomic and proteomicanalyses. Proceedings of the National Academy ofSciences, 102(31), 10913-10918.
- Rivkina, E. M., Friedmann, E. I., McKay, C. P., &Gilichinsky, D. A. (2000). Metabolic activity ofpermafrost bacteria below the freezingpoint. Applied and EnvironmentalMicrobiology, 66(8), 3230-3233.
- Mihoub, F., Mistou, M. Y., Guillot, A., Leveau, J. Y.,Boubetra, A., & Billaux, F. (2003). Cold adaptationof Escherichia coli: microbiological and proteomicapproaches. International journal of foodmicrobiology, 89(2-3), 171-184.
- Kandror, O., Bretschneider, N., Kreydin, E.,Cavalieri, D., & Goldberg, A. L. (2004). Yeast adaptto near-freezing temperatures by STRE/Msn2, 4-dependent induction of trehalose synthesis andcertain molecular chaperones. Molecular cell, 13(6),771-781.
- Muhr, J. (2009). Carbon dynamics under naturaland manipulated meteorological boundaryconditions in a forest and a fen ecosystem (Doctoraldissertation).
- Mindock, C. A., Petrova, M. A., & Hollingsworth, R.I. (2001). Re-evaluation of osmotic effects as ageneral adaptative strategy for bacteria in subfreezingconditions. Biophysical Chemistry, 89(1),13-24.