Effect of temperature on fatty acid profile of Nostoc spongiaeforme (freshwater) and marine water Nostoc calcicola (marine water): A comparative study

Автор: Prabha Tiwari, Prabhat Kumar Sharma

Журнал: Журнал стресс-физиологии и биохимии @jspb

Статья в выпуске: 4 т.16, 2021 года.

Бесплатный доступ

The Fatty acid profiling in Nostoc spongiaeforme and Nostoc calcicola was undertaken at varying growth temperature. The extraction of fatty acid was done by chloroform: methanol method and identification of various SFA, MUFA and PUFA was performed using GC-MS. The result of our study showed that amount of fatty acid content varied with varying temperature. At low temperature, the content of unsaturated fatty acid was maximum in both the Nostoc species but the amount of saturated fatty acid was reduced under the same condition. Whereas, at extreme temperature unsaturated fatty acid was least in both Nostoc species and saturated fatty acid was maximum. Both species showed higher amount of fatty acid content at 20°C and 30°C. Our study concluded that the best temperature for mesophilic cyanobacteria to produce higher amount of fatty acid content is in the range of 20-30°C.

Еще

Cyanobacteria, Fatty acids, GC-MS, Nostoc, Temperature

Короткий адрес: https://sciup.org/143178320

IDR: 143178320

Список литературы Effect of temperature on fatty acid profile of Nostoc spongiaeforme (freshwater) and marine water Nostoc calcicola (marine water): A comparative study

  • Chen, G. Q., Jiang, Y., & Chen, F. (2008). Variation of lipid class composition in Nitzschia laevis as a response to growth temperature change. Food Chemistry, 109(1), 88-94. doi:10.1016/j.foodchem.2007.12.022
  • Chisti, Y. (2007). Biodiesel from microalgae. Biotechnology Advances, 25(3), 294306. doi:10.1016/j.biotechadv.2007.02.001
  • Demirbas, A., & Fatih Demirbas, M. F. (2011). Importance of algae oil as a source of biodiesel. Energy Conversion and Management, 52(1), 163-170. doi:10.1016/j.enconman.2010.06.055
  • Ge, S., Champagne, P., Plaxton, W. C., Leite, G. B., & Marazzi, F. (2017). Microalgal cultivation with waste streams and metabolic constraints to triacylglycerides accumulation for biofuel production. Biofuels, Bioproducts and Biorefining, 11(2), 325-343. doi:10.1002/bbb.1726
  • Guschina, I. A., & Harwood, J. L. (2006). Lipids and lipid metabolism in eukaryotic algae. Progress in Lipid Research, 45(2), 160-186. doi:10.1016/j.plipres.2006.01.001
  • Hariskos, I., & Posten, C. (2014). Biorefinery of microalgae-opportunities and constraints for different production scenarios. Biotechnology Journal, 9(6), 739-752. doi:10.1002/biot.201300142
  • Hilditch, T. P., & Williams, P. N. (1964). The chemical constitution of natural fats. The chemical constitution of natural fats (4th ed)
  • Jiang, Y., & Chen, F. (2000). Effects of temperature and temperature shift on docosahexaenoic acid production by the marine microalge Crypthecodinium cohnii. Journal of the American Oil Chemists' Society, 77(6), 613-617. doi:10.1007/s11746-000-0099-0
  • Li, Y., Lian, S., Tong, D., Song, R., Yang, W., Fan, Y., ... and Hu, C. (2011). One-step production of biodiesel from Nannochloropsis sp. on solid base Mg-Zr catalyst. Applied Energy, 88(10), 33133317. doi:10.1016/j.apenergy.2010.12.057
  • Murakami, Y., Tsuyama, M., Kobayashi, Y., Kodama, H., & Iba, K. (2000). Trienoic fatty acids and plant tolerance of high temperature. Science, 287(5452), 476-479. doi:10.1126/science.287.5452.476
  • Renaud, S. M., Thinh, L. V., Lambrinidis, G., & Parry, D. L. (2002). Effect of temperature on growth, chemical composition and fatty acid composition of tropical Australian microalgae grown in batch cultures. Aquaculture, 211(1-4), 195-214.
  • doi:10.1016/S0044-8486(01)00875-4 Stanier, R. Y., Deruelles, J., Rippka, R., Herdman, M., & Waterbury, J. B. (1979). Generic assignments, strain histories and properties of pure cultures of cyanobacteria. Microbiology, 111(1), 1-61. doi:10.1099/00221287-111-1-1
  • Seto, A., Wang, H. L., & Hesseltine, C. W. (1984). Culture conditions affect eicosapentaenoic acid content ofChlorella minutissima. Journal of the American Oil Chemists' Society, 61(5), 892-894. doi:10.1007/BF02542159
  • Shafiee, S., & Topal, E. (2009). When will fossil fuel reserves be diminished? Energy Policy, 37(1), 181189. doi:10.1016/j.enpol.2008.08.016
  • Thompson, Jr., G. A. (1996). Lipids and membrane function in green algae. Biochimica et Biophysica Acta, 1302(1), 17-45. doi:10.1016/0005-2760(96)00045-8
  • Tredici, M. R. (2010). Photobiology of microalgae mass cultures: Understanding the tools for the next green revolution. Biofuels, 1(1), 143-162. doi:10.4155/bfs.09.10
  • Wang, S., Zhang, D., & Pan, X. (2012). Effects of arsenic on growth and photosystem II (PSII) activity of Microcystis aeruginosa. Ecotoxicology and Environmental Safety, 84, 104-111. doi:10.1016/j.ecoenv.2012.06.028
Еще
Статья научная