Effectiveness of 2-D and 3-D modelling of dovetail joint of composite fan blade for choosing rational reinforcement schemes

Бесплатный доступ

Turbofan jet engines are among the most complex and responsible constructions in the world. The creation of modern globally competitive engines is impossible without the use of digital twin technologies: a set of computational models that fully describe the behaviour of the structure under any operating conditions. Today, composite materials are widely used in many industries. In aircraft engines, their use is very promising for fan blades and fan case to reduce the overall weight of the engine and inertial loads. The dovetail joint of the fan blade works in compound stress conditions. To assess the strength of this element, it is necessary to consider a three-dimensional formulation of the problem, which requires significant computational resources. The use of composite materials is complicated by the complexity of preparing mesh models. A correct choice of the material strength criterion is another important factor that must be taken into account during the analysis of the mechanical behaviour of the thick-walled composite structures. The chosen criterion largely determines the reliability and weight efficiency of the composite structure. This paper considers the possibility of replacing the three-dimensional statement of the problem with a two-dimensional one when choosing rational reinforcing schemes for the dovetail joint of a CFRP fan blade at the initial stages using Daniel strength criterion.

Еще

Digital twin, aircraft jet engine, composite fan blade, dovetail joint, numerical simulation, strength analysis, daniel criterion

Короткий адрес: https://sciup.org/146282035

IDR: 146282035   |   DOI: 10.15593/perm.mech/2021.1.01

Список литературы Effectiveness of 2-D and 3-D modelling of dovetail joint of composite fan blade for choosing rational reinforcement schemes

  • Borovkov A.I., Maruseva V.M., Ryabov Yu.A. A new paradigm of digital design and modelling of globally competitive products of the new generation. Working report of the Department of Corporate Education of the Moscow School of Management Skolkovo «Digital Production: Methods, Ecosystems, Technologies». Available: http://assets.fea.ru/uploads/fea/news/2018/04_april/12/cifrovoe-proiz-vodstvo-032018.pdf.
  • Anoshkin A.N., Zuiko V.Yu., Shipunov G.S., Tretya-kov A.A. Technologies and problems of composite materials mechanics for production of outlet guide vane for aircraft jet engine. PNRPU Mechanics Bulletin. 2014, no. 4, pp. 5-44.
  • Karimbaev T.D., Luppov A.A., Afanasiev D.V., Palchi-kov D.S. On the formation of technical requirements for a polymer material of a promising fan blade of a turbofan engine. Engine. 2015, no. 1(97), pp 4-10.
  • Karelin O.O., Koltyrina K.Y. Employment of composite materials in aero-engine manufacturing. Bulletin of P.A. Solovyov Rybinsk State Aviation Technical University. 2015, no. 2(35), pp. 53-59.
  • Karimbaev T.D., Luppov A.A., Afanasiev D.V. CF composite fan rotor blading for perspective engines. Engine. 2011, no. 6(78), pp. 2-9.
  • Rubcov S.M. Primenenie sovremennyh polimernyh kom-pozicionnyh materialov v ehlementah i uzlah gazoturbinnyh avia-cionnyh dvigatelej: dissertaciya na soiskanie uchenoj stepeni k.t.n: 05.02.01, Perm' 2009, 140p.
  • Grinev M.A., Anoshkin A.N., Pisarev P.V., Zuiko V.Yu., Shipunov G.S. CAD/CAE modelling of mechanical behavior of composite outlet guide vane for aircraft jet engine. PNRPU Mechanics Bulletin. 2015, no. 3, pp. 38-51.
  • Grinev M.A., Anoshkin A.N., Pisarev P.V., Zuiko V.Yu., Shipunov G.S. Stress-strain analysis and strength prediction of composite outlet guide vane for aircraft jet engine. PNRPU Mechanics Bulletin. 2015, no. 4, pp. 293-307.
  • Novikov A.S., Karimbaev T.D., Luppov A.A., Afanasiev D.V., Mezentsev M.A. Innovation in the use of composite materials in aircraft engines. Engine. 2015, no. 2(98), pp. 8-11.
  • Novikov A.S., Karimbaev T.D. Large bypass fan blades for advanced turbojet engines. Engine. 2015, no. 5(101), pp. 6-11.
  • Wang Y., Soutis C., Hajdaei A., Hogg P.J. Finite element analysis of composite T-joints used in wind turbine blades. Plastics, Rubber and Composites. 2015, vol. 44, iss. 3, pp. 87-97.
  • Anoshkin A.N., Tashkinov A.A. Prognozirovanie nesushchej sposobnosti kompozitnyh flancev korpusnyh detalej aviadvigatelej. Perm': Izd-vo PGTU, 1998. 101 p.
  • Anoshkin A.N., Tashkinov A.A. Nonsteady-state damage accumulation processes in composite flanges under cyclic loads. Mechanics of Composite Materials. 1997, vol. 33, no. 5, pp. 449-454.
  • Anoshkin A.N., Rudakov M.V., Straumit I.S., Shustova E.N. Raschet nds i ocenka prochnosti kompozitnogo flanca stekloplastikovogo kozhuha aviacionnogo gazoturbinnogo dvigatelya. Vestnik UGATU. 2011, vol. 15, no. 1(41), pp. 67-75.
  • Anoshkin A.N., Rudakov M.V., Straumit I.S., Grinev M.A. Modeling the mechanical tests of composite flange sample-segment from aircraft engine cover. Izvestia of RAS SamSC. 2011, vol. 13, no.1-2, pp. 283-288.
  • Sun C.T. Strength analysis of unidirectional composites and laminates. In: Comprehensive Composite Materials, Kelly A. and Zweben C. (Eds). Oxford: Elsevier Science Ltd., 2000, pp. 641-666.
  • Christensen R.M., DeTeresa S.J. Delamination failure investigation for out-of-plane loading in laminates. Journal of Composite Materials. 2004, vol. 38, no. 24, pp. 2231-2238.
  • Hill R. The Mathematical theory of plasticity. Science, 1998. 355 p.
  • Tsai S.W., Wu E.M. A General Theory of Strength for Anisotropic Materials. Journal of Composite Materials. 1971, vol. 5, no. 1, pp. 58-80.
  • Daniel I.M. Failure of composite materials. Strain. 2007, vol. 42, no. 1, pp. 4-12.
  • Daniel I.M. Yield and failure criteria for composite materials under static and dynamic loading. Progress in Aerospace Sciences. 2016, vol. 81, pp. 18-25.
  • Daniel I.M., Daniel S.M., Fenner J.S. A new yield and failure theory for composite materials under static and dynamic loading. International Journal of Solids and Structures. 2018, vol. 148-149, pp. 79-93.
  • Anandavel K., Prakash R.V. Effect of three-dimensional loading on macroscopic fretting aspects of an aero-engine blade disc dovetail interface. Tribology International. 2011, vol. 44, no. 11, pp. 1544-1555.
  • Dave G.R., Krishaswamy R., Chadrappa L.M., Kulkarni K., Jain N. Design and Analysis of Crown Profile of Fan Rotor Blade Roots for Gas Turbines. In: Proc. of the ASME 2014 Gas Turbine India Conference, GTINDIA2014-8180. DOI: 10.1115/GTINDIA2014-8180.
  • Papanikos P., Meguid S.A., Stjepanovic Z. Three-dimensional nonlinear finite element analysis of dovetail joints in aeroengine discs. Finite Elements In Analysis And Design. 1998, vol. 29, no. 3-4, pp. 173-186.
  • Beisheim J.R., Sinclair G.B. On the three-dimensional finite element analysis of dovetail attachments. Journal of Turbomachinery. 2003, vol. 125, no. 2, pp. 372-379.
  • Beisheim J.R., Sinclair G.B. Three-dimensional finite element analysis of dovetail attachments with and without crowning. Journal of Turbomachinery. 2008, vol. 130, no. 2. pp. 1-8.
  • Zhang B., Kawashita L.F., Jones M.I., Lander J.K., Hallet S.R. An experimental and numerical investigation into damage mechanisms in tapered laminates under tensile loading. Composites Part A: Applied Science and Manufacturing. 2020, vol. 133, 105862.
  • Bower A.F. Applied Mechanics of Solids. CRC Press, 2009. 820p.
  • Klinetob C.B., Huth B.P., Reinhardt G.E. Composite fan blade dovetail root. U.S. Patent 8,573,947 B2, 2013.
  • Kudryavtsev O.A., Zhikharev M.V., Olivenko N.A. Creation and verification of computational models for analysis of the mechanical behaviour of jet engines composite components under high-velocity impact: Main problems and basic recommendations. PNRPU Mechanics Bulletin. 2019, no. 4, pp. 68-79.
  • Bond N.M., Hemsworth M.C. Assembly of a composite blade root and a rotor. U.S. Patent 5,573,377, Nov. 12, 1993.
  • McCaffrey M.G. Root region of a blade for a gas turbine engine. U.S. Patent 8,794,925 B2, Aug. 5, 2014.
  • Abot J.L., Daniel I.M. Through-thickness Mechanical Characterization of Woven Fabric Composites. Journal of Composite Materials. 2004, vol. 38, no. 7, pp. 543-553.
Еще
Статья научная