Effects of Foliar Application of ZnO Nanoparticles on Secondary Metabolite and Micro-elements of Camelina (Camelina sativa L.) Under Salinity Stress
Автор: Torfeh Akhavan Hezaveh, Fatemeh Rahmani, Hadi Alipour, Latifeh Pourakbar
Журнал: Журнал стресс-физиологии и биохимии @jspb
Статья в выпуске: 4 т.16, 2020 года.
Бесплатный доступ
The present study investigated the biochemical impact of ZnO nanoparticles (NPs) and salinity stress in Camelina (Camelina sativa L.) plants. ZnO NPs were applied at 0, 20, 40 and 80 mgL-1 and salinity stress (NaCl) were at 0, 50, and 100 mM. Salinity stress significantly enhanced total phenolic compounds, anthocyanin, carotenoid and ability to scavenge the DPPH radical in shoots and roots. We demonstrate that the ZnO NPs, plant carotenoid content is profoundly affected by salinity and ZnO NPs. Salinity stress decreased zinc concentration in shoots and root, but increased macro-element such as calcium (Ca) and phosphorous (P). Application of 20 mgL-1 ZnO NPs gave the most impact contents of calcium (Ca), phosphorous (P). With increasing ZnO NPs concentration, zinc (Zn) content was increased. Foliar application of ZnO NPs did not show any significant effect on flavonoid content in Camelina but caused increases in DPPH radical scavenging capacity in shoot and root. We found that the amount of phenolic compounds in shoot was decreased at 20 mgL-1 of ZnO NPs concentration. ZnO NPs at 20 mgL-1 was more provocative to reduce the effects of NaCl. Therefore, the results suggest that the appropriate concentration of ZnO NPs (20 mgL-1) could overcome the negative effects of salt stress in Camelina.
Camelina, Elements, Salinity, Secondary metabolites, ZnO NPs
Короткий адрес: https://sciup.org/143173862
IDR: 143173862
Список литературы Effects of Foliar Application of ZnO Nanoparticles on Secondary Metabolite and Micro-elements of Camelina (Camelina sativa L.) Under Salinity Stress
- Abdel-Wahed, M., S., A., Amin, A., A., and El Rashad, Abedini, M. (2016). Physiological responses of wheat plant to salinity under different concentrations of Zn. Acta Biologica Szegediensis, 60(1), 9-16.
- Ak, T. and Gülçin, İ. (2008). Antioxidant and radical scavenging properties of curcumin. Chemicobiological interactions, 174(1), 27-37.
- Akhavan Hezaveh, T., Pourakbar, L., Rahmani, F., & Alipour, H. (2020). Effects of ZnO NPs on phenolic compounds of rapeseed seeds under salinity stress. Journal of Plant Process and Function, 8(34), 11-18.
- Akula, R. and Ravishankar, G.A. (2011). Influence of abiotic stress signals on secondary metabolites in plants. Plant signaling and behavior, 6(11), 1720-1731.
- Akula, R. and Ravishankar, G.A. (2011). Influence of abiotic stress signals on secondary metabolites in plants. Plant signalling and behaviour, 6(11), 1720-1731.
- Allen, S.F. Grimshaw, H.F. Rowl, A.B. (1984). Chemical Analysis. In Moor, P.D. Chapman, S.B. (Eds.) Methods in plant ecology. Blackwell, Oxford, pp. 185‒344.
- Arbona Mengual, V., Manzi, M., De Ollas Valverde, C.J. and Gómez Cadenas, A. (2013). Metabolomics as a Tool to Investigate Abiotic Stress Tolerance in Plants. International Journal Molecular Sciences 14 (3), 4885-4911.
- Askari, M., Amini, F. and Jamali, F. (2015). Effects of zinc on growth, photosynthetic pigments, proline, carbohydrate and protein content of Lycopersicum esculentum L. under salinity. JPPF 3, 45-58.
- Bartwal, A., Mall, R., Lohani, P., Guru, S.K. and Arora, S. (2013). Role of secondary metabolites and brassinosteroids in plant defense against environmental stresses. Journal of Plant Growth Regulation, 32(1), 216-232.
- Candan, N. and Tarhan, L. (2003). Changes in chlorophyll-carotenoid contents, antioxidant enzyme activities and lipid peroxidation levels in Zn-stressed Mentha pulegium. Turkish Journal of Chemistry, 27(1), 21-30.
- Cherian, G. (2012). Camelina sativa in poultry diets: opportunities and challenges. Biofuel co-products as livestock feed: opportunities and challenges. Rome: FAO, 303-310.
- Chilian, A., Bancuta, R.O., Bancuta, I., Setnescu, R., Ion, R.M., Radulescu, C., Setnescu, T., Stihi, C., Gheboianu, A.I. and Chelarescu, E.D. (2015). Study of the influence of Zn concentration on the absorption and transport of Fe in maize by AAS and EDXRF analysis techniques. Romanian Reports in Physics, 67(3), 1138-1151.
- Coskun, D., Britto, D.T. and Kronzucker, H.J. (2010). Regulation and mechanism of potassium release from barley roots: an in planta 42K+ analysis. New Phytologist, 188(4), 1028-1038.
- Dai, L.P., Xiong, Z.T., Huang, Y. and Li, M.J. (2006). Cadmium‐induced changes in pigments, total phenolics, and phenylalanine ammonia‐lyase activity in fronds of Azolla imbricata. Environmental Toxicology: An International Journal, 21(5), 505-512.
- Ebrahimian, E., Bybordi, A. and Seyyedi, S.M., (2017). How nitrogen and zinc levels affect seed yield, quality, and nutrient uptake of canola irrigated with saline and ultra-saline water. Communications in Soil Science and Plant Analysis, 48(3), pp.345-355.
- Elisia, I. (2006). The protective effect of blackberry anthocyanins against free radical-induced oxidation and cytotoxicity in multiple cell lines (Doctoral dissertation, University of British Columbia).
- Elmastaş, M., Dermirtas, I., Isildak, O. and Aboul‐Enein, H.Y. (2006). Antioxidant activity of S‐carvone isolated from spearmint (Mentha Spicata L. Fam Lamiaceae). Journal of liquid chromatography & related technologies, 29(10), 1465-1475.
- Eryllmaz F. (2006). The relationships between salt stress and anthocyanin content in higher plants. Biotechnology & Biotechnological Equipment, 20(1), 47-52.
- Farahat, M.M., Ibrahim, M.S., Taha, L.S. and El-Quesni, E.F. (2007). Response of vegetative growth and some chemical constituents of Cupressus sempervirens L. to foliar application of ascorbic acid and zinc at Nubaria. World Journal of Agricultural Sciences, 3(4), 496-502.
- Gao, S., Ouyang, C., Wang, S., Xu, Y., Tang, L. and Chen, F. (2008). Effects of salt stress on growth, antioxidant enzyme and phenylalanine ammonialyase activities in Jatropha curcas L. seedlings. Plant Soil Environ, 54(9), 374-381.
- Georgé, S., Brat, P., Alter, P. and Amiot, M.J. (2005). Rapid determination of polyphenols and vitamin C in plant-derived products. Journal of Agricultural and food chemistry, 53(5), 1370-1373.
- Gogos, A., Knauer, K. and Bucheli, T.D. (2012). Nanomaterials in plant protection and fertilization: current state, foreseen applications, and research priorities. Journal of agricultural and food chemistry, 60(39), 9781-9792.
- Gomes, M.A.D.C., Pestana, I.A., Santa-Catarina, C., Hauser-Davis, R.A. and Suzuki, M.S. (2017). Salinity effects on photosynthetic pigments, proline, biomass and nitric oxide in Salvinia auriculata Aubl. Acta Limnologica Brasiliensia, 29, e9.
- Grace, S.C. and Logan, B.A. (2000). Energy dissipation and radical scavenging by the plant phenylpropanoid pathway. Philosophical Transactions of the Royal Society of London B: Biological Sciences, 355(1402), 1499-1510.
- Hamid, N., Bukhari, N. and Jawaid, F. (2010). Physiological responses of Phaseolus vulgaris to different lead concentrations. Pakistan Journal of Botany, 42(1), 239-246.
- Havaux, M., Lütz, C. and Grimm, B. (2003). Chloroplast Membrane Photostability in chlPTransgenic Tobacco Plants Deficient in Tocopherols. Plant Physiology, 132(1), 300-310.
- Heydarian, Z., Yu, M., Gruber, M., Coutu, C., Robinson, S.J. and Hegedus, D.D., 2018. Changes in gene expression in Camelina sativa roots and vegetative tissues in response to salinity stress. Scientific reports, 8(1), pp.1-22.
- Hong, W.A.N.G. and Jin, J.Y. (2007). Effects of zinc deficiency and drought on plant growth and metabolism of reactive oxygen species in maize (Zea mays L). Agricultural Sciences in China, 6(8), 988-995.
- Hussein, M.M. and Abou-Baker, N.H. (2018). The contribution of nano-zinc to alleviate salinity stress on cotton plants. Royal Society open science, 5(8), 171809. 1-11
- Ibrahim, F. M. and El Habbasha, S. F. (2015). Chemical composition, medicinal impacts and cultivation of Camelina (Camelina sativa). Int. J. PharmTech Res, 8, 114-122
- Jahangir, M., Abdel-Farid, I.B., Kim, H.K., Choi, Y.H. and Verpoorte, R.(2009). Healthy and unhealthy plants: The effect of stress on the metabolism of Brassicaceae. Environmental and Experimental Botany, 67(1), 23-33.
- Karowe, D.N. and Grubb, C. (2011). Elevated CO2 increases constitutive phenolics and trichomes, but decreases inducibility of phenolics in Brassica rapa (Brassicaceae). Journal of chemical ecology, 37(12), 1332-1340.
- Keilig, K. and Ludwig-Mueller, J. (2009). Effect of flavonoids on heavy metal tolerance in Arabidopsis thaliana seedlings. Botanical Studies, 50(3), 311-318.
- Khalid, H., Kumari, M., Grover, A. and Nasim, M. (2015). Salinity stress tolerance of camelina investigated in vitro.Scientia agriculturae bohemica, 46(4), 137-144.
- Khorgamy, A., & Farnia, A. (2009). Effect of phosphorus and zinc fertilisation on yield and yield components of chick pea cultivars. In 9th African Crop Science, Conference Proceedings, Cape Town, South Africa, 28 September-2 October 2009 (pp. 205- 208). African Crop Science Society.
- Kim, M.S., CHUL, K., Do Hyun, J.O. and Yeon, W.R. (1999). Effect of fungal elicitor and heavy metals on the production of flavonol glycosides in cell cultures of Ginkgo biloba. Journal of microbiology and biotechnology, 9(5), 661-667.
- Kreslavski, V.D., Lyubimov, V.Y., Shirshikova, G.N., Shmarev, A.N., Kosobryukhov, A.A., Schmitt, F.J., Friedrich, T. and Allakhverdiev, S.I. (2013). Preillumination of lettuce seedlings with red light enhances the resistance of photosynthetic apparatus to UV-A. Journal of Photochemistry and Photobiology B: Biology, 122, 1-6.
- Ksouri, R., Megdiche, W., Debez, A., Falleh, H., Grignon, C. and Abdelly, C.(2007). Salinity effects on polyphenol content and antioxidant activities in leaves of the halophyte Cakile maritima. Plant Physiology and Biochemistry, 45(3-4), 244-249.
- Kumari, M., Khan, S.S., Pakrashi, S., Mukherjee, A. and Chandrasekaran, N. (2011). Cytogenetic and genotoxic effects of zinc oxide nanoparticles on root cells of Allium cepa. Journal of hazardous materials, 190(1-3), 613-621
- Lee, J. Durst, R. W., & Wrolstad, R. E. (2005). Determination of total monomeric anthocyanin pigment content of fruit juices, beverages, natural colorants, and wines by the pH differentiamethod: collaborative study. Journal of AOAC international, 88(5), 1269-1278.
- Lichtenthaler, H.K. (1987). Chlorophylls and carotenoids: Pigments of photosynthetic biomembranes. Methods Enzymol. 148, 350-382
- Lim, J.H., Park, K.J., Kim, B.K., Jeong, J.W. and Kim, H.J. (2012). Effect of salinity stress on phenolic compounds and carotenoids in buckwheat (Fagopyrum esculentum M.) sprout. Food chemistry, 135(3), 1065-1070.
- Mahajan, P., Dhoke, S.K. and Khanna, A.S. (2011). Effect of nano-ZnO particle suspension on growth of mung (Vigna radiata) and gram (Cicer arietinum) seedlings using plant agar method. Journal of Nanotechnology, 2011, Article ID 696535.
- Marreiro, D., Cruz, K., Morais, J., Beserra, J., Severo, J. and de Oliveira, A.(2017). Zinc and oxidative stress: current mechanisms. Antioxidants, 6(2), 24.
- Marslin, G., Sheeba, C.J., and Frankin, G. (2017). Nanoparticles alter secondary metabolism in plant via ROS burst. Frontiers in plant science, 8, 832.
- Mateos‐Naranjo, E., Redondo‐Gómez, S., Cambrollé, J., Luque, T. and Figueroa, M.E. (2008). Growth and photosynthetic responses to zinc stress of an invasive cordgrass Spartina densiflora. Plant Biology. 10, 754–762.
- Michalak, A. (2006). Phenolic compounds and their antioxidant activity in plants growing under heavy metal stress. Polish Journal of Environmental Studies, 15(4), 523–530.
- Mierziak, J., Kostyn, K. and Kulma, A. (2014). Flavonoids as important molecules of plant interactions with the environment. Molecules, 19(10), 16240-16265.
- Misra, A., Dwivedi, S., Srivastava, A.K., Tewari, D.K., Khan, A. and Kumar, R. (2006). Low iron stress nutrition for evaluation of Fe-efficient genotype physiology, photosynthesis, and essential monoterpene oil(s) yield of Ocimum sanctum. Photosynthetica, 44(3), 474-477.
- Munns, R. and Tester, M. (2008). Mechanisms of salinity tolerance. Annu. Rev. Plant Biol., 59, 651-681.
- Posmyk, M.M., Kontek, R. and Janas, K.M. (2009). Antioxidant enzymes activity and phenolic compounds content in red cabbage seedlings exposed to copper stress. Ecotoxicology and Environmental Safety, 72(2), 596-602.
- Prasad, T.N.V.K.V., Sudhakar, P., Sreenivasulu, Y., Latha, P., Munaswamy, V and et al. (2012). Effect of nanoscale zinc oxide particles on the germination, growth and yield of peanut. Journal of plant nutrition, 35(6), 905-927.
- Rathore, D., Agrawal, S.B. and Singh, A. (2003). Influence of supplemental UV-B radiation and minerals on biomass, pigments and yield of two cultivars of wheat (Triticum aestivum L.). International Journal of Biotronics, 32, 1-5.
- Rezgui, M., Majdoub, N., Ben-Kaab, S., Marzouk, B., Gouia, H., Araújo, M.E.M. and Ben-Kaab, L.B., (2017). How Salt Stress Represses the Biosynthesis of Marrubiin and Disturbs the Antioxidant Activity of Marrubium Vulgare L. Polish Journal of Environmental Studies, 26(1), 267-277.
- Saleh, J. and Maftoun, M. (2010). Interactive effects of NaCl levels and zinc sources and levels on the growth and mineral composition of rice. Journal of Agricultural Science and Technology, 10, 325-336.
- Shweta, M., & Agrawal, S. B. (2006). Interactive effects between supplemental ultraviolet-B radiation and heavy metals on the growth and biochemical characteristics of Spinacia oleracea L Brazilian Journal of Plant Physiology, 18(2), 307-314.
- Siddiqui, S.N., Umar, S. and Iqbal, M. (2015). Zincinduced modulation of some biochemical parameters in a high-and a low-zinc-accumulating genotype of Cicer arietinum L. grown under Zndeficient condition. Protoplasma. 252, 1335–1345.
- Sofo, A., Vitti, A., Nuzzaci, M., Tataranni, G., Scopa, A., Vangronsveld, J. ... & Sanità di Toppi, L. (2013). Correlation between hormonal homeostasis and morphogenic responses in Arabidopsis thaliana seedlings growing in a Cd/Cu/Zn multi‐ pollution context. Physiologia plantarum, 149(4), 487-498.
- Staszczak, M. (2008). The role of the ubiquitinproteasome system in the response of the ligninolytic fungus Trametes versicolor to nitrogen deprivation. Fungal Genetics and Biology, 45(3), 328-337.
- Taheri, N., Sharif-Abad, H. H., Yousefi, K., & Roholla-Mousavi, S. (2012). Effect of compost and animal manure with phosphorus and zinc fertilizer on yield of seed potatoes. Journal of soil science and plant nutrition, 12(4), 705-714.
- Telesiñski, A., Nowak, J., Smolik, B., Dubowska, A. and Skrzypiec, N. (2008). Effect of soil salinity on activity of antioxidant enzymes and content of ascorbic acid and phenols in bean [Phaseolus vulgaris L.] plants. Journal of Elementology, 13(3), 401-409
- Torabian, S., Zahedi, M., & Khoshgoftarmanesh, A. (2016). Effect of foliar spray of zinc oxide on some antiox idant enzymes activity of sunflower under salt stress. J. Agr. Sci. Tech. 18, 1013-1025
- Vahdati, K., & Lotfi, N. (2013). Abiotic stress tolerance in plants with emphasizing on drought and salinity stresses in walnut. Abiotic Stress–Plant Responses and Applications in Agriculture, 10, 307-365.
- Vinod, K., Awasthi, G. and Chauchan, P.K. (2012). Cu and Zn tolerance and responses of the biochemical and physiochemical system of wheat. Journal of Stress Physiology and Biochemistry, 8(3). 203-213
- Wahid, A. and Ghazanfar, A. (2006). Possible involvement of some secondary metabolites in salt tolerance of sugarcane. Journal of plant physiology, 163(7), 723-730.
- Wang, C., Zhang, S.H., Wang, P.F., Hou, J., Zhang, W.J., Li, W. and Lin, Z.P.(2009). The effect of excess Zn on mineral nutrition and antioxidative response in camelina seedlings. Chemosphere, 75(11), 1468-1476.
- Weisany, W., Sohrabi, Y., Heidari, G., Siosemardeh, A. and Ghassemi-Golezani, K. (2011). Physiological responses of soybean (Glycine max L.) to zinc application under salinity stress. Australian Journal of Crop Science 5, 1441-1447.
- Weisany, W., Sohrabi, Y., Heidari, G., Siosemardeh, A. and Ghassemi-Golezani, K. (2012). Changes in antioxidant enzymes activity and plant performance by salinity stress and zinc application in soybean (Glycine max L.). Plant Omic 5, 60-67.
- Zhou, J., Diao, X., Wang, T., Chen, G., Lin, Q., Yang, X., & Xu, J. (2018). Phylogenetic diversity and antioxidant activities of culturable fungal endophytes associated with the mangrove species Rhizophora stylosa and R. mucronata in the South China Sea. PloS one, 13(6)