Effects of photoperiod and temperature on energy budgets and endocrine hormones concentrations in Tupaia belangeri

Автор: Zhu Wan-Long, Zhang Hao, Zhang Lin, Wang Zheng-Kun

Журнал: Журнал стресс-физиологии и биохимии @jspb

Статья в выпуске: 1 т.10, 2014 года.

Бесплатный доступ

Environmental cues play important roles in the regulation of an animal’s physiology and behavior. In the present study, we performed a factorial experiment (temperature/photoperiod) in which Tupaia belangeri was acclimated to different photoperiods (long photoperiod, 16L:8D; short photoperiod, 8L:16D) and temperatures (warm, 30 oC; cold,5 oC) to test the hypothesis that photoperiod, temperature, or both together can trigger changes in energy budgets and endocrine hormones concentrations. The results showed that temperature, photoperiod had a significant effect on energy intake, and digestible energy intake. Both short photoperiod and cold caused animal's gross energy intake to increase by 25.6% and 89.1 %, and caused digestible energy intake to increase by 24.1% and 83.5% respectively compared with that of the initial, but there was no significant interaction between photoperiod and temperature on energy intake and digestible energy intake. Temperature had significant effect on serum thyrotropin (TSH) concentrations, serum leptin level, photoperiod had a significant effect on TSH and melatonin. The present results suggested that T. belangeri adapt cold stress or short photoperiod by increasing energy intake, and may be regulated by endocrine hormones. Furthermore, leptin and melatonin seem to be involved in the regulation of body mass and energy balance in T. belangeri.

Еще

Tupaia belangeri, energy budgets, endocrine hormones concentrations, temperature, photoperiod

Короткий адрес: https://sciup.org/14323839

IDR: 14323839

Список литературы Effects of photoperiod and temperature on energy budgets and endocrine hormones concentrations in Tupaia belangeri

  • Abelenda, M., Ledesma, A., Bial, E. (2003) Leptin administration to cold acclimated rats reduce both food intake and brown adpose tissue thermogenesis. J Therm Biol, 28: 525-530
  • Arendt, J. AND Skene, D.J., 2005. Melatonin as a chronobiotic. Sleep Med Rev., 9 (1): 25-39
  • Bartness, T.J., Demas, G.E., Song, C.K. (2002) Seasonal changes in adiposity: the roles of the photoperiod, melatonin and other hormones, and sympathetic nervous system. Exp. Biol. Med., 227 (6): 363-376
  • Bozinovic, F. (1992) Rate of basal metabolismof grazing rodents from different habitats. J Mamm, 73 (2): 379-384
  • Drozdz, A. (1975) Metabolic cages for small rodents. In: Grodzinski W, Klekowski R Z, Duncan A eds: Methods for Ecological Bioenergetics. Oxford: Blackwell Scientific Press, 346-351
  • Du, J.Z., You, Z.B., (1992) A radioimmunoassay of corticotrophin releasing factor of hypothalamus in Ochotona curzoniae. Acta Theriol. Sin., 12 (3): 223-229
  • Genin, F., Perret, M. (2000) Photoperiod induced changes in energy balance in gray mouse lemurs. Physiol Behav, 71: 315-321
  • Hayes, J.P., Chappell, M.A. (1986) Effects of cold acclimation on maximum oxygen consumption during cold exposure and treadmill exercise in deer mice Peromyscus maniculatus. Physiol Zool, 59: 453-459
  • Heldmaier, G., Lynch, G.R. (1986) Pineal involvement in thermoregulation and acclimatization. Res Rev, 4: 97-139
  • Heldmaier, G., Steinlechner, S., Ruf, T., Wiesinger, H., Kingenspor, M. (1989) Photoperiod and thermoregulation in vertebrate: body temperature rhythms and thermogenic acclimation. J Biol Rhythm, 4: 251-265
  • Himms-Hagen, J. (1983) Thyroid hormones and thermogenesis. In: Mammalia Thermogenesis. Edited by Giraardie L and Stock M J. New York: Chapman and Hall, 141-177
  • Iverson, S.L., Turner, B.N. (1974) Winter weight dynamics in Microtus pennsylvanicus. Ecology, 55: 1030-1041
  • Klingenspor, M., Niggemann, H., Heldmaier, G. (2000) Modulation of leptin sensitivity by short photoperiod acclimation in the Djungarian hamster, Phodopus sungorus. J. Comp. Physiol. B, 170: 37-43
  • Knopper, L.D., Boily, P. (2000) The energy budget of captive Siberian hamsters, Phodopus sungorus, exposed to photoperiod changes: Mass loss is caused by a voluntary decrease in food intake. Physiol Biochem Zool, 73(4): 517-522·
  • Li, Q.F., Sun, R.Y., Huang, C.X., Wang, Z.K., Liu, X.T., Hou, J.J., Liu, J.S., Cai, L.Q., Li, N., Zhang, S.Z., Wang, Y. (2001) Cold adaptive thermogenesis in small mammals from different geographical zones of China. Comp. Biochem. Physiol., 129: 949-961
  • Li, X.S., Wang, D.H., Yang, M. (2004) Effects of cold acclimation on body weight, serum leptin level, energy metabolism and thermogenesis in the Mongolian gerbil Meriones unguiculatus. Acta Zool. Sin., 50; 334-340
  • Lynch G.R. (1973) Seasonal changes in thermogenesis, organ weights, and body composition in the white-footed mouse Peromyscus lucopus. Oecologia, 13: 363-376
  • McNabb, F.M.A. (1992) Thyroid-hormones, their activation, degradation and effects on metabolism. J Nutr., 125: 1773-1776
  • Nagy, T.R., Gower, B.A., Stetson, M.H. (1995) Endocrine correlates of seasonal body mass dynamics in the collared lemming Dicrostonyx groenlandicus. Amer. Zool, 35: 246-258
  • Nelson, R.J., Demas, G.E. (1997) Role of melatonin in mediating seasonal energetic and immunologic adaptations. Brain Res Bull, 44 (4): 423-430
  • Parmentier, M., Libert, F., Maenhaut, C., Lefort, A., Gérard, C., Perret, J., Van-Sande, J., Dumont, J.E., Vassart, G. (1989) Molecular cloning of the thyrotropin receptor. Science, 246(4937): 1620-1622
  • Song, Z.G., Wang, D.H. (2002) Relationships between metabolic rates and body composition in the Mongolian gerbil (Meriones unguiculatus). Acta Zoologica Sinica, 48: 445-451
  • Tomasi, T.E., Mitchell, D.A. (1996) Temperature and photoperiod effects on thyroid function and metabolism in cotton rats (Sigmodon hispidus). Com Biochem Physiol, 113: 267-274
  • Tomothy, J.B., Wade, G.N. (1985) Photoperiodic control of seasonal body weight cycles in hamsters. Neurosci Biobehav R, 9: 599-612
  • Voltura, M.B., Wunder, B.A. (1998) Effects of ambient temperature, diet quality, and food restriction on body composition dynamics of the prairie vole Microtus ochrogaster. Physiol. Zool., 71(3): 321-328
  • Wang, Y.X., Li, C.Y., Ma, S.L. (1991) The classification and ecology of tree shrews. In: Peng, Y., Ye, Z., Zou, R. Eds. Biology of Chinese Tree shrews (Tupaia belangeri Chinensis). Yunnan Scientic and Technological Press, Kunming
  • Wang, Z.K., Li, Q.F., Sun, R.Y., Liu, L. (1999) Effects of photoperiod and temperature on thermogenesis in the tree shrew (Tupaia belangeri). Acta Zoologica Sinica, 45: 287-293
  • Zhang, L., Liu, P., Zhu, W., Cai, J., Wang, Z. (2012) Variations in thermal physiology and energetics of the tree shrew (Tupaia belangeri) in response to cold acclimation. J. Comp. Physiol. B, 182: 167-176
  • Zhu, W.L., Jia, T., Lian, X., Wang, Z.K. (2010) Effects of cold acclimation on body mass, serum leptin level, energy metabolism and thermognesis in Eothenomys miletus in Hengduan Mountains region. J. Therm. Biol., 35(1): 41-46
  • Zhu, W.L., Wang, B., Cai, J.H., Lian, X., Wang, Z.K. (2011) Thermogenesis, energy intake and serum leptin in Apodemus chevrieri in Hengduan Mountains region during cold acclimation. J. Therm. Biol., 36(3): 181-186
  • Zhu, W.L., Zhang, H., Wang, Z.K. (2012). Seasonal changes in body mass and thermogenesis in tree shrews (Tupaia belangeri) the roles of photoperiod and cold. J. Therm. Biol., 37: 479-484
  • Zou, R., Ji, W., Yan, H., Lu, J. (1991) The captivities and reproductions of tree shrews. In: Peng, Y., Ye, Z., Zou, R. Eds. Biology of Chinese Tree shrews (Tupaia belangeri chinensis).Yunnan Scientic and Technological Press, Kunming
Еще
Статья научная