Effects of phytopathogenic fungi on plants (review)

Автор: Sodikov Bakhrom, Sodikova Dilduza, Omonlikov Alisher

Журнал: Бюллетень науки и практики @bulletennauki

Рубрика: Сельскохозяйственные науки

Статья в выпуске: 4 т.8, 2022 года.

Бесплатный доступ

This article outlines explanatory data on the interactions between phytopathogenic fungi and plants, as well as infestation ways of pathogenic fungi on plants. A thorough analysis of the literature revealed that phytopathogenic fungi use a number of biochemical and mechanical methods to penetrate into the plant tissues, including the production of cell wall-degrading enzymes, also use toxins, effector proteins, and growth regulators. Cell wall degrading enzymes (CWDEs) in pathogenesis are the main weapon of phytopathogenic fungi.

Phytopathogens, fungi, plant, disease, pathogen, phytotoxin, mycotoxin, enzyme, effector

Короткий адрес: https://sciup.org/14123646

IDR: 14123646

Список литературы Effects of phytopathogenic fungi on plants (review)

  • Sodikov B. (2018). Chemical protection of Helianthus annuus L. from Botrytis cinerea Pers. Bulletin of science and practice, 4(10), 219 222. (in Russian).
  • Sodikov, B. S., & Khuzhaev, O. T. (2019). Khimicheskaya zashchita podsolnechnika ot al'ternarioza. Aktual'nye problemy sovremennoi nauki, (4), 188 191. (in Russian).
  • Sodikov, B. S., & Omonlikov, A. (2022). Yangi fungitsidlarning biologik samaradorligini urganish. Yangi O'zbekistonda milliy taraqqiyot va innovasiyalar, 380 385. (in Uzbek).
  • Sodikov, B., Rakhmonov, U., & Khamiraev, O. (2021). Phytopthora infestans zamburuғining fitotoksik va patogenlik khususiyatlarini urganish // Agro kimyo himoya va o’simliklar karantini, (2), 69 71. (in Uzbek). 5. Sodikov, B., Khamiraev, U. & Omonlikov, A. (2022). Usimliklarni khimoya kilishda yangi fungitsidlarni kullash. Obshchestvo i Innovatsii, 2(12/S) 334 342. (in Uzbek). https://doi.org/10.47689/2181 1415 vol2 iss12/S pp334 342
  • Doehlemann, G., Ökmen, B., Zhu, W., & Sharon, A. (2017). Plant pathogenic fungi. Microbiology spectrum, 5(1). https://doi.org/10.1128/microbiolspec.funk 0023 2016
  • Salvatore, M. M., & Andolfi, A. (2021). Phytopathogenic Fungi and Toxicity. Toxins, 13(10), 689. https://doi.org/10.3390/toxins13100689
  • Pradhan, A., Ghosh, S., Sahoo, D., & Jha, G. (2021). Fungal effectors, the double edge sword of phytopathogens. Current genetics, 67(1), 27 40. https://doi.org/10.1007/s00294 020 01118 3
  • Kleemann, J., Rincon Rivera, L. J., Takahara, H., Neumann, U., van Themaat, E. V. L., van der Does, H. C., ... & O’Connell, R. J. (2012). Sequential delivery of host induced virulence effectors by appressoria and intracellular hyphae of the phytopathogen Colletotrichum higginsianum. PLoS pathogens, 8(4), e1002643. https://doi.org/10.1371/journal.ppat.1002643
  • Rodriguez‐Moreno, L., Ebert, M. K., Bolton, M. D., & Thomma, B. P. (2018). Tools of the crook‐infection strategies of fungal plant pathogens. The Plant Journal, 93(4), 664 674. https://doi.org/10.1111/tpj.13810
  • Ryder, L. S., & Talbot, N. J. (2015). Regulation of appressorium development in pathogenic fungi. Current opinion in plant biology, 26, 8 13. https://doi.org/10.1016/j.pbi.2015.05.013
  • Sodikov, B. S., Kholmuradov, E. A., & Avazov, S. E. (2018). White rot disease of sunflower plant and its control. Journal of agrochemical protection and plant quarantine, (5), 54 55.
  • Sodikov B. S. (2019). Chemical protection of sunflower from downy mildew.
  • Lombard, V., Golaconda Ramulu, H., Drula, E., Coutinho, P. M., & Henrissat, B. (2014). The carbohydrate active enzymes database (CAZy) in 2013. Nucleic acids research, 42(D1), D490 D495. https://doi.org/10.1093/nar/gkt1178
  • Zhao, Z., Liu, H., Wang, C., & Xu, J. R. (2014). Erratum to comparative analysis of fungal genomes reveals different plant cell wall degrading capacity in fungi. BMC genomics, 15(1), 1 15. https://doi.org/10.1186/1471 2164 15 6
  • Avazov, S., & Sodikov, B. (2020). White rot diseases of sunflower and measures against them. Society & innovation, 1(2), 23 28. (in Russian). https://doi.org/10.47689/2181 1415 vol1 iss2 pp23 28
  • Bilai, V. I. (1955). Fuzarii: (Biologiya i sistematika). Kiev. (in Russian).
  • Bilai, V. I. (1965). Biologicheski aktivnye veshchestva mikroskopicheskikh gribov i ikh primenenie. Kiev. (in Russian).
  • Bilai, V. I. (1973). Metody eksperimental'noi mikologii. Kiev. (in Russian).
  • Litovka, Yu. A. (2003). Vidovoi sostav gribov roda Fusarium i ikh rol' v patogeneze seyantsev khvoinykh v lesopitomnikakh Srednei Sibiri: authoref. Ph.D. diss. Krasnoyarsk. (in Russian).
  • Placinta, C. M., D’Mello, J. F., & Macdonald, A. M. C. (1999). A review of worldwide contamination of cereal grains and animal feed with Fusarium mycotoxins. Animal feed science and technology, 78(1 2), 21 37. https://doi.org/10.1016/S0377 8401(98)00278 8
  • Nikulenko, T. F., & Chkanikov, D. I. (1987). Toksiny fitopatogennykh gribov i ikh rol' v razvitii boleznei rastenii. Moscow. (in Russian).
  • Sarkisov, A. Kh. (1984). Mikotoksikozy cheloveka i zhivotnykh: (Epidemiologiya, etiologiya, patogenez). Moscow. (in Russian).
  • Monastyrskii, O. A. (1996). Toksiny fitopatogennykh gribov. Zashchita i karantin rastenii, 3, 12 14. (in Russian).
  • Bacon, C. W., Porter, J. K., Norred, W. P., & Leslie, J. (1996). Production of fusaric acid by Fusarium species. Applied and Environmental Microbiology, 62(11), 4039 4043. https://doi.org/10.1128/aem.62.11.4039 4043.1996
  • Miller, J. D., Savard, M. E., Sibilia, A., Rapior, S., Hocking, A. D., & Pitt, J. I. (1993). Production of fumonisins and fusarins by Fusarium moniliforme from Southeast Asia. Mycologia, 85(3), 385 391. https://doi.org/10.1080/00275514.1993.12026290
  • Kern, H. (1972). Phytotoxins produced by Fusaria. Phytotoxins in Plant Diseases; Proceedings of the NATO Advanced Study Institute.
  • Jaroszuk Ściseł, J., Tyśkiewicz, R., Nowak, A., Ozimek, E., Majewska, M., Hanaka, A., ... & Janusz, G. (2019). Phytohormones (auxin, gibberellin) and ACC deaminase in vitro synthesized by the mycoparasitic Trichoderma DEMTkZ3A0 strain and changes in the level of auxin and plant resistance markers in wheat seedlings inoculated with this strain conidia. International Journal of Molecular Sciences, 20(19), 4923. https://doi.org/10.3390/ijms20194923
  • Fu, S. F., Wei, J. Y., Chen, H. W., Liu, Y. Y., Lu, H. Y., & Chou, J. Y. (2015). Indole 3 acetic acid: A widespread physiological code in interactions of fungi with other organisms. Plant signaling & behavior, 10(8), e1048052. https://doi.org/10.1080/15592324.2015.1048052
  • Krause, K., Henke, C., Asiimwe, T., Ulbricht, A., Klemmer, S., Schachtschabel, D., ... & Kothe, E. (2015). Biosynthesis and secretion of indole 3 acetic acid and its morphological effects on Tricholoma vaccinum spruce ectomycorrhiza. Applied and environmental microbiology, 81(20), 7003 7011. https://doi.org/10.1128/AEM.01991 15
  • Cheng, J., Peng, Y., Yan, J., Zhou, M. L., Tang, Y., Gao, A. J., ... & Zhou, M. (2021). Research Progress in Phytopathogenic Fungi and Their Role as Biocontrol Agents. Frontiers in Microbiology, 12, 1209. https://doi.org/10.3389/fmicb.2021.670135
  • Ballhorn, D. J., Kautz, S., Heil, M., & Hegeman, A. D. (2009). Cyanogenesis of wild lima bean (Phaseolus lunatus L.) is an efficient direct defense in nature. PLoS One, 4(5), e5450. https://doi.org/10.1371/journal.pone.0005450
  • Khakimov, A. A., Omonlikov, A. U., & Utaganov, S. B. U. (2020). Current status and prospects of the use of biofungicides against plant diseases. GSC Biological and Pharmaceutical Sciences, 13(3), 119 126. https://doi.org/10.30574/gscbps.2020.13.3.0403
  • Khakimov, A., Salakhutdinov, I., Omonlikov, A., & Utaganov, S. (2022). Traditional and current prospective methods of agricultural plant diseases detection: A review. IOP Conference Series: Earth and Environmental Science, vol. 951, no. 1. IOP Publishing, 012002.
  • Agosta, W. (1996). Bombardier Beetles and Fever Trees: A Close up Look at Chemical Warfare and Signals in Animals and Plants. Reading, Addison Wesley, 224.
  • Kuśnierczyk, A., Winge, P., Midelfart, H., Armbruster, W. S., Rossiter, J. T., & Bones, A. M. (2007). Transcriptional responses of Arabidopsis thaliana ecotypes with different glucosinolate profiles after attack by polyphagous Myzus persicae and oligophagous Brevicoryne brassicae. Journal of Experimental Botany, 58(10), 2537 2552. https://doi.org/10.1093/jxb/erm043
  • Hammond Kosack, K. E., & Jones, J. D. G. (1996). Resistance gene dependent plant defense responses. The Plant Cell, 8(10), 1773. https://doi.org/10.2307/3870229
  • Sattarovich, S. B., Normamadovich, R. U., Kakhramonovich, K. U., & Mirodilovich, A. M. (2020). Fungal diseases of sunflower and measures against them. PalArch's Journal of Archaeology of Egypt/Egyptology, 17(6), 3268 3279.
  • Sodikov, B., Khamiraev, U., & Omonlikov, A. (2022). Application of New Fungicides Against the Diseases of Agricultural Crops. Bulletin of Science and Practice, 8(2), 110 117. https://doi.org/10.33619/2414 2948/75/15
  • Sodikov, B. S. (2019). Fungal diseases of sunflower and measures to combat them: abstract. Ph.D. diss. Tashkent.
Еще
Статья обзорная