Effects of Pseudomonas putida and Vitazyme® on growth and development of the potato tuber moth

Автор: Idris I., Adam A., Hashem A., Saour G.

Журнал: Журнал стресс-физиологии и биохимии @jspb

Статья в выпуске: 4 т.19, 2023 года.

Бесплатный доступ

The ability of Pseudomonas putida strain BTP1 and the biostimulant (Vitazyme®) to protect potato plants from the potato tuber moth Phthorimaea operculella (PTM) (Zeller) was investigated. Significant negative effects on survival, pupal weight, and fertility of the insect were observed between treatments and control. The results revealed that the BTP1-treated foliage had significantly the highest negative impact on PTM development and reproduction compared to other treatments. The combination of BTP1 and Vitazym® did not result in a synergistic detrimental effect on potato tuber moth reproduction. However, the biostimulant and BTP1 treatments showed the largest negative effects on PTM reproduction due to the density of hairs and trichomes on the treated foliage. Application of BTP1 and Vitazyme® could be a potential tool to reduce the use of insecticides and enhance integrated pest management against potato tuber moth.

Еще

Biostimulant, leaf hairs, plant resistance, potato tuber moth, pseudomonas putida

Короткий адрес: https://sciup.org/143180991

IDR: 143180991

Список литературы Effects of Pseudomonas putida and Vitazyme® on growth and development of the potato tuber moth

  • Adam, A., Idris, I. and Ayyoubi, Z. (2013). In vitro Pseudomonas putida BTP1-induced systemic resistance in grapevine rootstocks against phylloxera (Daktulosphaira vitifoliae). Adv. Hortic. Sci. 27:137142.
  • Adam, A., Idris, I., Khalil, N. and Houssian, K. (2016) Arimura, G. I., Kost C. and Boland, W. (2005) Herbivore-induced, indirect plant defences. Biochim. Biophys. Acta, Mol. 1734: 91-111.
  • Berlyn, G. P., and Sivaramakrishnan, S. (1996) The use of organic biostimulants to reduce fertilizer use, increase stress resistance, and promote growth, p 106-112 in TD Landis and DB South. National
  • Proceedings, Forest and Conservation Nursery Associations. Gen. Tech. Rep. PNW-GTR389, Portland, OR: Department of Agriculture, Forest Service, Pacific Northwest Research Station. National Proceedings: Forest and Conservation Nursery Associations.
  • Bong, C. F. J. and Sikorowskip, P. (1991) Effects of cytoplasmic polyhedrosis virus and bacterial contamination on growth and development of the corn earworm, Helicoverpa zea (Lepidoptera: Noctuidae). J. Invertebr. Pathol. 57: 406-412.
  • Bosu, P.P. AND Wagner, M.R. (2014). Effects of induced water stress on leaf trichome density and foliar nutrients of three elm (Ulmus) species: implications for resistance to the elm leaf beetle. Environ. Entomol. 36: 595-601.
  • Boughton, A. J., Hoover, K. and Felton, G. W. (2005). Methyl jasmonate application induces increased densities of glandular trichomes on tomato, Lycopersicon esculentum. J. Chem. Ecol. 31: 22112216.
  • Cho, S. R., Kim, M., Shin, E., Kim, H. K., Koo, H. N. and Kim, G. H. (2021). X-ray Irradiation-Induced Abnormal Development and DNA Damage in Phthorimaea operculella (Lepidoptera: Gelechiidae). Appl. Sci. 11: 5068. https://doi.org/10.3390/app11115068.
  • Clough, G. H., Rondon, S. I., Debano, S. J., David, N. and Hamm, P. B. (2010). Reducing tuber damage by potato tuberworm (Lepidoptera: Gelechiidae) with cultural practices and insecticides. J. Econ. Entomol. 103 1306-1311.
  • Commare, R. R., Nandakumar, R., Kandan, A., Suresh, S., Bharathi, M., Raguchander, T. and Samiyappan, R. (20020. Pseudomonas fluorescens based bioformulation for the management of sheath blight disease and leaffolder insect in rice. Crop.Prot. 21: 671-677.
  • Dara, S. K. (2021). Advances in biostimulants as an integrated pest management tool in horticulture. Published by Burleigh Dodds Science Publishing Limited. http://dx.doi.org/10.19103/AS.2021.0095.03.
  • Delgado-ramirez, C. S., Hernandez-martinez, R. and Induced resistance in potato plants by a nonpathogenic Pseudomonas putida BTP1 against potato tuber moth (Phthorimaea operculella Zeller). Adv. Hortic. Sci. 30: 47-52.
  • Sepulveda, E. (2021). Rhizobacteria associated with a native Solanaceae promote plant growth and decrease the effects of Fusarium oxysporum in tomato. Agron. 11: 579.
  • Duffey, S. S. (1986). Plant glandular trichomes: their partial role in defence against insects. Insects and the plant surface. 151-172.
  • Gonzales, W. L., Negritto, M. A., Suarez, L. H. and Gianoli, E. (2008). Induction of glandular and non-glandular trichomes by damage in leaves of Madia sativa under contrasting water regimes. Acta Oecol. 33: 128-132.
  • Idris, I., Naddaf, M., Harmalani, H., Alshater, R., Alsafadi, R., (2023). Efficacy of Olive Stones and Corncobs Crystalline Silica Nanoparticles (SiO2, NPs) Treatments on Potato Tuber Moths (Phthorimaea operculella). Silicon. https://doi.org/10.1007/s12633-022-02286-2.
  • Jacques, P., Ongena, M. A. R. C., Gwose, I., Seinsche, D., Schröder, H., Delfosse, P., Thonart, P., Taraz, K. and Budzikiewicz, H. (1995). Structure and characterization of isopyoverdin from Pseudomonas putida BTP1 and its relation to the biogenetic pathway leading to pyoverdins. Zeitschrift für Naturforschung C. 50: 622-629.
  • Joe, M. M. and Muthukumaran, N. (2008). Role of certain tomato against the leaf caterpillar Spodoptera litura Fab. Notulae Botanicae Horti Agrobotanici Cluj-Napoca., 36:71-75.
  • Kroschel, J., Koch, W. and (1996). Studies on the use of chemicals, botanicals and Bacillus thuringiensis in the management of the potato tuber moth in potato stores. Crop. Prot. 15: 197-203.
  • StatView for windows, version 5.0. Statistical Methods in Medical Research. 8: 337-341.
  • Linsalata, V. (2000). Role of endogenous flavonoids in resistance mechanism of Vigna to aphids. J. Agric. Food Chem. 48: 5316-5320.
  • Malakar, R. and Tingey, W. M. (2000). Glandular trichomes of Solanum berthaultii and its hybrids with potato deter oviposition and impair growth of potato tuber moth. Entomol. Exp. Appl.94: 249-257.
  • Mostafa, A. A., El-rahman, S. N. A., Shehata, S., Abdallah, N. A. and Omar, H. S. (2021). Assessing the effects of a novel biostimulant to enhance leafminer resistance and plant growth on common bean. Sci. Rep. 11: 1-14.
  • Ongena, M., Giger, A., Jacques, P., Dommes, J. and Thonart, P. (2002). Study of bacterial determinants involved in the induction of systemic resistance in bean by Pseudomonas putida BTP1. Eur. J. Plant Pathol. 108: 187-196.
  • Peiffer, M., Tooker, J. F., Luthe, D.S. and Felton, G.W. (2009). Plants on early alert: glandular trichomes as sensors for insect herbivores. New. Phytol. 184: 644656.
  • Pereira, R. V., Filgueiras, C, C., Doria, J., Penaflor, M. F. G. V. and Willett, D. S. (2021). The effects of biostimulants on induced plant defense. Front. Agron. Vol 3/Article 630596. https.//doi.org/10.3389/fagro.2021630596.
  • Racke, J. and Sikora, R.A., (1992). Isolation, formulation and antagonistic activity of rhizobacteria toward the potato cyst nematode Globodera pallida. Soil Biol. Biochem. 24: 521-526.
  • Richardson, A. D., Aikens, M., Berlyn, G. P. and Marshall, P. (2004). Drought stress and paper birch (Betula papyrifera) seedlings: effects of an organic biostimulant on plant health and stress tolerance, and detection of stress effects with instrument-based, noninvasive methods. Arboric. Urban. For. 30(1) 52.
  • Saour, G. (2010). Organic biostimulant application induces increased densities of leaf hairs and trichomes on potato: implication for susceptibility to potato tuber moth Phthorimaea operculella (Zeller) (Lepidoptera: Gelechiidae). Adv. Hortic. Sci.24:104-108.
  • Martin, P. M. (2003). Trichomes of Lycopersicon spp. and their effect on Myzus persicae (Sulzer) (Hemiptera: Aphididae). Aust. J. Entomol. 42: 373378.
  • Sivaramakrishnan, S., Berlyn, G. P., Montgomery, M. E. and Ashton, P. M. S. (1996). White oaks, gypsy moths and organic biostimulants: the effect of defoliation and nutrients on plant anatomy and physiology. Bull. Ecol. Soc. Am. 77: 11.
  • Valenzuela-soto, J. H., Estrada-hernandez, M. G., Ibarra-laclette, E., Delano-frier, J. P. (2010). Inoculation of tomato plants (Solanum lycopersicum) with growth-promoting Bacillus subtilis retards whitefly Bemisia tabaci development. Planta, 231: 397-410.
  • Vijayasamundeeswari, A., Ladhalakshmi, D., Sankaralingam, A. and Samiyappan, R. (2009). Plant growth promoting rhizobacteria of cotton affecting the developmental stages of Helicoverpa armigera. J. Plant Prot. Res. 49(3). DOI: 10.2478/v10045-009-0036-y.
  • Yaman, M., Demirbag, Z., and Belduz, A. O. (1999). Investigations on the bacterial flora as a potential biocontrol agent of chestnut weevil, Curculio elephas (Coleoptera: Curculionidae) in Turkey. Biol. 54 : 679683.
  • Zalucki, M. P., Clarke, A. R. and Malcolm, S. B. (2002). Ecology and behavior of first instar larval Lepidoptera. Annu. Rev. Entomol. 47: 361-393.
  • Zehnder, G., Kloepper, J., Yao, C. and Wei, G. (1997). Induction of systemic resistance in cucumber against cucumber beetles (Coleoptera: Chrysomelidae) by plant growth-promoting rhizobacteria. J. Econ. Entomol. 90: 391-396.
  • Zehnder, G. W., Murphy, J. F., Sikora, E. J., Kloepper, J.W. (2001). Application of rhizobacteria for induced resistance. Eur. J. Plant Pathol. 107: 39-50.
  • Zhang, M., Yan, J., Ali, A. and GAO, Y., (2021). Different performance of Phthorimaea operculella Zeller (Lepidoptera: Gelechiidae) among four potato tuber varieties under laboratory condition. Insects. 12:580. DOI: 10.3390/insects12070580.
Еще
Статья научная