Elastic-plastic torsion of a two-layer rod

Автор: Senashov S.I., Savostyanova I.L., Lukyanov S.V.

Журнал: Siberian Aerospace Journal @vestnik-sibsau-en

Рубрика: Informatics, computer technology and management

Статья в выпуске: 1 vol.24, 2023 года.

Бесплатный доступ

We study the elastic-plastic torsion of a two-layer rod under the action of torque in this article. It is as-sumed that the rod consists of two layers. Each layer has its own elastic properties, but the plastic proper-ties of both layers are the same. The contact boundary of the layers is located along the ох axis. The lateral boundary of the rod is stress-free, displacements and stresses are continuous at the interface. The compo-nents of the stress tensor at a point are calculated using contour integrals derived from conservation laws calculated along the lateral boundary. Next, the second invariant of the stress tensor is compared with the yield strength. At those points where the yield point is reached, the plastic state is realized, in the rest – elastic. This allows you to build a boundary between the plastic and elastic regions. This technique pro-vides a way to calculate elastic-plastic boundaries for the main rolling profiles of rods. This is supposed to be done in subsequent works. We remind you that earlier, with the help of conservation laws, the main boundary value problems for a plastic two-dimensional medium, elastic-plastic torsion of isotropic rods and elastic media for bodies of finite dimensions were solved.

Еще

Two-layer elastic-plastic rod, conservation laws, exact solutions

Короткий адрес: https://sciup.org/148329672

IDR: 148329672   |   DOI: 10.31772/2712-8970-2023-24-1-35-41

Список литературы Elastic-plastic torsion of a two-layer rod

  • Annin B. D., Bytev V. O., Senashov S. I. Gruppovye svojstva uravnenij uprugosti i plastichnosti [Group properties of elasticity and plasticity equations]. Novosibirsk. Nauka. 1985. 144 p.
  • Ovsyannikov L. V. Gruppovoj analiz differencial'nyh uravnenij [Group analysis of differential equations]. Moscow. Nauka. 1978. 399 p.
  • Senashov S. I. On the laws of conservation of plasticity equations. Doklady AN SSSR. 1991. vol. 320. №. 3. p. 606.
  • Senashov S. I. [Conservation laws and the exact solution of the Cauchy problem for plasticity equations] Doklady RAN. 1995. vol. 345. №. 5. p. 619.
  • Kiryakov P. P., Senashov S. I., Yakhno A. N. Prilozhenie simmetrij i zakonov sohraneniya k resheniyu differencial'nyh uravnenij [Application of symmetries and conservation laws to the solution of differential equations]. Novosibirsk. SO RAN. 2001. 201 p.
  • Senashov S. I., Vinogradov A. M. Symmetries and conservation laws of 2-dimensional ideal plasticity. Proc. Edinburg Math. Soc. 1988. pp. 415–439.
  • Senashov S. I., Yakchno A. N. Reproduction of solutions for bidimensional ideal plasticity. Journal of Non-Linear Mechanics. 2007, Vol. 42, P. 500–503.
  • Senashov S. I., Yakchno A. N. Deformation of characteristic curves of the plane ideal plasticity equations by point symmetries. Nonlinear analysis. 2009, No. 71, P. 1274–1284.
  • Senashov S. I., Yakchno A. N. Conservation Laws, Hodograph Transformation and Boundary Value Problems of Plane Plasticity. SIGMA. 2012, Vol. 8, No. 071, P. 16.
  • Senashov S. I., Yakchno A. N. Some symmetry group aspects of a perfect plane plasticity sys-tem. J. Phys. A: Math. Theor. 2013. No. 46, P. 355202.
  • Senashov S. I., Yakchno A. N. Conservation Laws of Three-Dimensional Perfect Plasticity Equations under von Mises Yield Criterion. Abstract and Applied Analysis. 2013, Vol. 2013, 8 p.
  • Gomonova O. V., Senashov S. I. Determination of elastic and plastic deformation regions in the problem of uniaxial stretching of a plate weakened by holes. Journal PMTF. 2021, Vol. 62, No 1.
  • Senashov S. I., Filyushina E. V. [Conservation laws of the equations of the plane theory of elasticity]. Vestnik SibGAU. 2014, No. 1 (53), P. 79–81 (In Russ.).
  • Senashov S. I., Savostyanova I. L. On elastic torsion around three axes. Siberian Journal of Industrial Mathematics. 2021, Vol. 24, No. 1, P. 120–125 (In Russ.).
  • Senashov S. I., Gomonova O. V. Construction of Elastoplastic Boundary in Problem of Ten-sion of a Plate Weakened by Holes. Intern. J. Non. Lin. Mech. 2019, Vol. 108, P. 7–10.
  • Gomonova O. V., Senashov S. I. Determination of elastic and plastic deformation regions in the problem of uniaxial tension of a plate weakened by holes. Journal of Applied Mechanics and Technical Physics. 2021, Vol. 62, No. 1, P. 179–186.
  • Senashov S. I., Kondrin A. V.; Cherepanova, O. N. On Elastoplastic Torsion of a Rod with Multiply Connected Cross-Section. J. Siberian Federal Univ., Math. & Physics. 2015, No. 7(1), P. 343–351 (In Russ.).
  • Senashov S. I., Cherepanova О. N., Коndrin А. V. Elastoplastic Bending of Beam. J. Siberian Federal Univ., Math. & Physics. 2014, No. 7(2), P. 203–208 (In Russ.).
Еще
Статья научная