Electrotechnical complexes of heliotechnical devices: a generalized classification
Автор: Sologubov A.Yu., Kirpichnikova I.M.
Журнал: Вестник Южно-Уральского государственного университета. Серия: Энергетика @vestnik-susu-power
Рубрика: Альтернативные источники энергии
Статья в выпуске: 1 т.19, 2019 года.
Бесплатный доступ
The need to systematize the existing electrotechnical complexes of heliotechnical devices (ECHD) is due to their growing quantity, diversity, and element base. In the proposed publication, a generalized classification of the ECHD is made over a wide range of parameters that characterize the ECHD as a separate class of devices, as their diversity and features are sufficient to describe the ECHD as such. The classification herein proposed analyzes in detail the whole structure and possible layout solutions, an effort enabled by the well-developed modern elemental base for the design of the ECHD. Using this classification enables a more precise, detailed and verified structural synthesis of the ECHD, which will help the solar engineering engineer to better understand and justify a set of technical solutions in the design, construction and operation of ECHD classes. Only electric drives are considered.
Electrotechnical complexes, heliotechnical devices, solar panels, collectors, rotary mechanism, electric motor, sun-tracking sensor, control system, systematization, classification
Короткий адрес: https://sciup.org/147232716
IDR: 147232716 | DOI: 10.14529/power190104
Текст научной статьи Electrotechnical complexes of heliotechnical devices: a generalized classification
The need to systematize and classify the ECHD at the present stage is due to the growth of their quantity, diversity, and also the element base. Until now, there has been no generalized and most detailed classification of the huge diversity of the ECHD. There have been attempts to classify ECHD both in our country and abroad [1–14]. However, in the process of studying them, incompleteness of these classifications was revealed: they consider either a single classification feature or a narrow group of classification characteristics.
Thus, in [2] a classification is considered only in terms of power. The need to systematize and classify the ECHD as of today is due to their growing quantity, diversity, and element base. Until now, there has been no generalized and sufficiently detailed classification of the diverse ECHD available. Both Russian and nonRussian scientists have made attempts to classify the ECHD [1–15]. However, thorough analysis reveals the incompleteness of such classifications, as they consider either a single classification feature or a narrow group of classification characteristics. Thus, paper [2] presents a classification based solely on power. Only rotary mechanisms are considered in [1, 5, 7]. Papers [3, 4, 6, 12, 14, 15–18] present a rather broad review of literature, while still being obsolete as of today as they do not include a number of new classification characteristics (type of rotary mechanism, type of sensor and algorithm). Papers [10, 19] present only a sensor classification, whereas paper [19] ignores some of the new developments that existed at the time of writing it. Paper [11] presents a rather narrow classification of some mathematical algorithms for con-
trolling the positioning of the receiving surface of the ECHD by means of stepper motors.
Statement of Problem
The authors hereof attempt to classify all the diversity of the ECHD existing both in Russia and abroad, to expand and supplement the existing classifications.
The paper presents the basic groups, into which electric drives may be divided by the 14 most common criteria:
-
1. Power [2].
-
2. Trigger type [20].
-
3. Support-rotary mechanism type [7, 21].
-
4. Coordinate motion type [20].
-
5. Gearbox use [20].
-
6. Type of servomotor-to-actuator transmission (gear drives only) [20].
-
7. Type of electric machine used [4, 12, 21–31].
-
8. Sun-tracking sensor type [14].
-
9. Sensor-signal type [14].
-
10. Spatial position control algorithm type (for controlling the electric drive coordinates) [2, 32–38].
-
11. Type of communication with the main control computer (if any) [39].
-
12. Place of installation [18].
-
13. Foundation type [18].
-
14. Environment type [18].
Theory
According to GOST R 57229–2016 (IEC 62817: 2014) Photo-Electric Systems. Devices for Tracking the Sun. Technical Specifications [18], the photovoltaic system is a system that converts solar energy
Table 1
Electrotechnical complexes of heliotechnical devices: a generalized classification
№ |
Classification feature |
Characteristics |
1 |
Power |
a) Small (power output from fractions of kW to 1 MW) |
b) Average (from several MW to 10 MW) |
||
c) Large (> 10 MW) |
||
2 |
Trigger type |
a) Individual ECHD |
b) Combined ECHD (e.g. as part of a solar farm) |
||
3 |
Support-rotary mechanism type |
1. Uniaxial: |
a) Horizontal-axis |
||
b) Vertical-axis |
||
c) Inclined |
||
2. Biaxial: |
||
a) Horizontal main axis |
||
b) Vertical main axis |
||
c) Inclined main axis |
||
3. Modified biaxial mechanisms: |
||
a) With passive supports and posts |
||
b) Rotary |
||
c) Coordinate-interdependent |
||
4 |
Coordinate motion type |
a) Rotational |
b) Translational (linear) |
||
5 |
Gearbox use |
a) Gear drive |
b) Gearless drive |
||
6 |
Type of servomotor-to-actuator transmission (gear drives only) |
a) Worm drive |
b) Cylindrical drive |
||
c) Bevel gear |
||
d) Planetary gear |
||
e) Eccentric gear |
||
f) Screw (screw-nut gear) |
||
7 |
Type of electric machine used |
a) DC (commutator) motor |
b) Stepper motor; |
||
c) Brushless DC motor (switched reluctance motor) |
||
d) Asynchronous motor with squirrel-cage rotor |
||
e) Linear electric motors |
Table 1 (end)
№ |
Classification feature |
Characteristics |
8 |
Sun-tracking sensor type |
a) Differential four-quadrant |
b) Collimator |
||
c) Pyramidal |
||
d) Spatial multi-channel |
||
e) Video and web camera with a vision system |
||
9 |
Sensor-signal type |
a) Analog |
b) Digital |
||
10 |
Spatial position control algorithm type (for controlling the electric drive coordinates) |
1. Open-loop (astronomical and mathematical algorithms for calculating the solar position) |
2. Closed loop: |
||
a) Linear algorithms |
||
b) With artificial intelligence methods (neural networks, fuzzy logic etc.) |
||
c) Automatic optimization systems (terminal control) |
||
3. Combined control algorithms |
||
11 |
Type of communication with the main control computer (if any) |
a) Wired |
b) Wireless |
||
12 |
Place of installation |
a) on the ground |
b) on the water; |
||
c) on a building (roof, wall) or another facility |
||
d) integrated in the building/facility |
||
13 |
Foundation type |
a) deep foundation |
b) on-surface foundation |
||
14 |
Environment type |
a) clean |
b) conditionally pure |
||
c) industrial |
||
d) maritime |
||
e) maritime-industrial |
Conclusion draft SoW and specifications for designing and devel-
The proposed generalized classification can used oping future ECHD. It can also be used for creating to analyze and study the existing designs, as well as to curricula to train specialists in related majors.
Список литературы Electrotechnical complexes of heliotechnical devices: a generalized classification
- Ngo Xuan Cuong. Analysis of the sun tracking systems to optimize the efficiency of solar panels/Ngo Xuan Cuong., Nguyen Thi Hong., Nhu Y. Do//European Journal of Technology and Design. -2016. -Vol. 14, no. 4. -P. 144-151.
- Аббасова, Т.С. Совершенствование системы бесперебойного электропитания для компьютерного оборудования/Т.С. Аббасова//Электротехнические и информационные комплексы и системы. -2011. -Т. 1, № 7. -С. 3-11.
- Деменкова, Т.А. Анализ и методика выбора алгоритмов для систем управления солнечными установками/Т.А. Деменкова, А.А. Финенко//Международная научно-техническая конференция «Информатика и Технологии. Инновационные технологии в промышленности и информатике» («МНТК ФТИ-2017)». -2017. -С. 306-309.
- Solar tracking methods to maximize PV system output -A review of the methods adopted in recent decade/V. Sumathi, R. Jayapragash, A. Bakshi, P.K. Akella//Renewable and Sustainable Energy Reviews. -2017. -Vol. 74, no. February 2016. -P.130-138.
- Sun Tracking Systems: A Review/C.-Y. Lee, P.-C. Chou, C.-M. Chiang, C.-F. Lin//Sensorsю -2009. -Vol. 9, no. 5. -P. 3875-3890. DOI: 10.3390/s90503875
- A review of principle and sun-tracking methods for maximizing solar systems output/H. Mousazadeh, A. Keyhani, A. Javadi et al.//Renewable and Sustainable Energy Reviews -2009. -Vol. 13, no. 8 -P. 1800-1818.
- Racharla, S. Solar tracking system -a review/S. Racharla, K. Rajan//International Journal of Sustainable Engineering. -2017. -Vol. 7038. -P. 1-10.
- Ya'u, M.J. A Review on solar tracking systems and their classifications/M.J. Ya'u//Journal of Energy, Environmental & Chemical Engineering. -2017. -Vol. 2, no. 3 -P. 46-50.
- A review of solar tracker patents in Spain/F.J.G. Gill, M. Miguel de Simón, J.P. Vara, J.R. Calvo//Proceedings of the 3rd WSEAS Int. Conf. on Renewable Energy Resources. -2009. -P. 292-297.
- Recent advancements and challenges in Solar Tracking Systems (STS): A review/W. Nsengiyumva, S.G. Chen, L. Hu, X. Chen//Renewable and Sustainable Energy Reviews. -2018. -Vol. 81. -P. 250-279.
- DOI: 10.1016/j.rser.2017.06.085
- Нго Суан Хыонг. Анализ конструктивных схем электромеханических систем солнечных батарей/Нго Суан Хыонг//Известия ТулГУ. Технические науки. -2013. -Т. 1. -С. 322-325.
- Liang, W. Several experiences on automatic sun tracking system/W. Liang, Z. Wang//Proceedings of ISES World Congress. -2007. -Vol. 1-4. -P. 1768-1772.
- Управление позиционными электроприводами блока измерения освещенности для термобарокамеры/В.В. Аржанов, В.Н. Мишин, Г.А. Ракитин, К.В. Аржанов. -2013. -Т. 1, № 27. -С. 20-23.
- Salgado-Conrado, L. A review on sun position sensors used in solar applications/L. Salgado-Conrado//Renewable and Sustainable Energy Reviews. -2017, no. February. -P. 1-19.
- DOI: 10.1016/j.rser.2017.08.040
- An imperative role of sun trackers in photovoltaic technology: A review/R. Singh, S. Kumar, A. Gehlot, R. Pachauri//Renewable and Sustainable Energy Reviews. -2018. -Vol. 82. -P. 3263-3278.
- DOI: 10.1016/j.rser.2017.10.018
- Al-Rousan, N. Advances in solar photovoltaic tracking systems: A review/N. Al-Rousan, N.A.M. Isa, M.K.M. Desa//Renewable and Sustainable Energy Reviews -2018. -Vol. 82, no. January. -P. 2548-2569.
- DOI: 10.1016/j.rser.2017.09.077
- A Review on Photovoltaic Systems: Mechanisms and Methods for Irradiation Tracking and Prediction/H.J. Loschi, Y. Iano, J. León, A. Moretti, F.C. Daibert, H. Braga//Smart Grid and Renewable Energy. -2015. -Vol. 6, no. 7. -P. 187-208.
- ГОСТ Р 57229-2016 (MЭK 62817:2014). Системы фотоэлектрические. Устройства слежения за солнцем. Технические условия. -M.: Изд-во стандартов, 2016. -68 с.
- Barker, L. Design of a low-profile two-axis solar tracker/L. Barker, M. Neber, H. Lee//Solar Energy. -2013. -Vol. 97. -P. 569-576.
- Prinsloo, G. Solar tracking -Sun Position, Sun Tracking, Sun Following/G. Prinsloo, R. Dobson. -Stellenbosch: SolarBooks, 2015. -542 p.
- Xinhong, Z. Intelligent Solar Tracking Control System Implemented on an FPGA/Z. Xinhong, W. Zongxian, Y. Zhengda//Nios II Embedded Processor Design Contest. -2007. -P. 217-246.
- Design and Construction of an Automatic Solar Tracking System/T.A. Khan, S.M.S. Tanzil, R. Rahman, S.M.S. Alam//6th International Conference on Electrical and Computer Engineering ICECE 2010. -2010. -P. 326-329.
- DOI: 10.1109/icelce.2010.5700694
- Автоматизированная фотоэлектрическая установка с повышенной энергетической эффективностью/Ю.А. Шиняков, Ю.А. Шурыгин, В.В. Аржанов и др.//Доклады Томского государственного университета систем управления и радиоэлектроники. -2011. -Т. 2 (24), № 24. -С. 282-287.
- Автономная фотоэлектрическая энергетическая установка/Ю.А. Шиняков, Ю.А. Шурыгин, В.В. Аржанов и др.//Известия Томского политехнического университета. -2012. -Т. 4, № 320. -С. 133-138.
- Минимизация энергопотребления электроприводами в фотоэлектрической энергетической установке/В.В. Аржанов, Ю.А. Шурыгин, Ю.А. Шиняков, К.В. Аржанов//Известия Томского политехнического университета. -2013. -Т. 4, № 322. -С. 146.
- Pointing Sensors and Sun Tracking Techniques/D. Fontani, P. Sansoni, F. Francini et al.//International Journal of Photoenergy. -2011. -Vol. 2011. -P. 9.
- Аржанов, К.В. Разработка структуры шагового электропривода для системы наведения фотоэлектрической установки при действии ветровой нагрузки/К.В. Аржанов, А.В. Аржанова//Энергетика: Эффективность, надежность, безопасность. -2000. -С. 4-6.
- Fathabadi, H. Novel high accurate sensorless dual-axis solar tracking system controlled by maximum power point tracking unit of photovoltaic systems/H. Fathabadi//Applied Energy. -2016. -Vol. 173. -P. 448-459.
- Китаева, М.В. Системы слежения за солнцем/М.В. Китаева, А.В. Юрченко, А.В. Скороходов//Вестник науки Сибири. -2012. -Т. 3, № 4. -С. 61-67.
- Cheng, L. Design and Experiment of a New Solar Automatic Tracking System/L. Cheng, B. Wang//2nd International Conference on Control, Automation, and Artificial Intelligence (CAAI 2017). -2017. -Vol. 134. -P. 142-145.
- DOI: 10.2991/caai-17.2017.29
- Китаева, М.В. Оптимизация двухосевой системы слежения за Солнцем/М.В. Китаева, А.В. Охорзина, А.В. Скороходов//III Научно-практическая конференция «Информационно-измерительная техника и технологии». -2012. -С. 114-124.
- Al-Naima, F.M. Design and construction of a solar tracking system/F.M. Al-Naima, N.A. Yaghobian//Solar & Wind Technology. -1990. -Vol. 7, no. 5. -P. 611-617.
- Direct tracking error characterization on a single-axis solar tracker/F. Salaberry, R. Pujol-Nadal, M. Larcher, M.H. Rittmann-Frank//Energy Conversion and Management. -2015. -Vol. 105. -P. 1281-1290.
- Felske, J.D. The effect of off-south orientation on the performance of flat-plate solar collectors/J.D. Felske//Solar Energy. -1978. -Vol. 20, no. 1. -P. 29-36.
- Control of Solar Energy Systems/E.F. Camacho, M. Berenguel, F.R. Rubio, D. Martínez. -Londond: Springer, 2012. -426 p.
- A Cascade Control Scheme for Hybrid Photovoltaic Power System/F. Cositore, S. Manfredi, M. Pagano, M. Roscia//2015 International Conference on Clean Electrical Power (ICCEP). -2015. -P. 441-447.
- DOI: 10.1109/iccep.2015.7177535
- Теин Лин У. Формирование контура автоматического слежения на солнечной энергетической установке/Теин Лин У., Э.В. Батырев//Оборонный комплекс -научно-техническому прогрессу России. -2009. -С. 38-41.
- Лукичев, Д.В. Нечеткая система управления позиционным следящим электроприводом опорно-поворотных устройств с нежесткими осями/Д.В. Лукичев, Г.Л. Демидова//Вестник ИГЕУ. -2013. -Т. 6. -С. 1-5.
- Pearson, J. An Assessment of Heliostat Control System Methods (Technical Report)/J. Pearson, B. Chen. -Golden (Colorado), 1986. -42 p.