Elucidating the mechanism of anti-apoptotic activity of а-crystallin and its therapeutic potential
Автор: Chakraborty Aparajita, De Priyanka, Saha Sudipa
Журнал: Журнал стресс-физиологии и биохимии @jspb
Статья в выпуске: 1 т.21, 2025 года.
Бесплатный доступ
Α- Crystallins are the structural proteins of the eye lens which possess anti-apoptotic activity. Both αA- and αB- crystallins are distinct antiapoptotic regulators which can interact with Bax and Bcl-XS, proapoptotic members of the Bcl-2 family in order to sequester their translocation into the mitochondria. Thus they may interfere with the mitochondrial apoptotic pathway which triggers Bax pro-apoptotic activity and the downstream activation of effector caspases such as Caspase-9 and Caspase-3. The differential regulation of α- crystallins has been observed in several ocular diseases such as age-related macular degeneration and many others. Crystallins interact with pro-apoptotic Bax and displayed cytoprotection against Bax-triggered apoptosis. αA-crystallin was found to inhibit chemical-induced apoptosis by inhibiting the activation of caspase-3 and caspase-9. Its antiapoptotic activity was found to be directly related to its chaperone activity. On the other hand, αB- crystallin associated with IKK-β activates its kinase activity which in turn, leads to the activation of NF- ĸB; this activation protects myoblasts from tumor necrosis factor-α (TNF-α) - induced cytotoxicity by enhancing the expression of Bcl-2, an anti-apoptotic protein. The anti- apoptotic mechanisms may be exploited for therapeutic purposes in near future.
Α- crystallin, antiapoptotic mechanism, pro-apoptotic members, bax, bcl-2, caspase-3, caspase-9, retinal degenerations, ikkβ, nf- ĸb, therapeutic purposes
Короткий адрес: https://sciup.org/143183776
IDR: 143183776
Список литературы Elucidating the mechanism of anti-apoptotic activity of а-crystallin and its therapeutic potential
- Acunzo, J., Katsogiannou, M., & Rocchi, P. (2012). Small heat shock proteins HSP27 (HspB1), αBcrystallin (HspB5) and HSP22 (HspB8) as regulators of cell death. The international journal of biochemistry & cell biology, 44(10), 1622-1631. https://doi.org/10.1016/j.biocel.2012.04.002
- Adhikari, A. S., Singh, B. N., Rao, K. S., & Rao, C. M. (2011). αB-crystallin, a small heat shock protein, modulates NF-κB activity in a phosphorylationdependent manner and protects muscle myoblasts from TNF-α induced cytotoxicity. Biochimica et Biophysica Acta (BBA)-Molecular Cell Research, 1813(8), 1532-1542. https://doi.org/10.1016/j.bbamcr.2011.04.009
- Antonioni, A., Dimauro, I., Fantini, C., Barone, R., Macaluso, F., Di Felice, V., & Caporossi, D. (2020). αB-crystallin response to a pro-oxidant noncytotoxic environment in murine cardiac cells: An “in vitro” and “in vivo” study. Free Radical Biology and Medicine, 152, 301-312. https://doi.org/10.1016/j.freeradbiomed.2020.03.01
- Aoyama, A., Steiger, R. H., Fröhli, E., Schäper, R., Deimling, A., Wiestler, O. D., & Klemenz, R. (1993). Expression of αB‐crystallin in human brain tumors. International journal of cancer, 55(5), 760-764. https://doi.org/10.1002/ijc.2910550511
- Andley, U. P. (2007). Crystallins in the eye: function and pathology. Progress in retinal and eye research, 26(1), 78-98. https://doi.org/10.1016/j.preteyeres.2006.10.003
- Andley, U. P. (2008). The lens epithelium: Focus on the expression and function of the α-crystallin chaperones. The international journal of biochemistry & cell biology, 40(3), 317-323. https://doi.org/10.1016/j.preteyeres.2006.10.003
- Chakraborty, A., Nandy, S., Saha, S., & De, P. (2023). An Insight on α-crystallin Interactions with Various Proteins in Systemic Disorders. Journal of Stress Physiology & Biochemistry, 19(3), 35-46.
- Dasgupta, S., Hohman, T. C., & Carper, D. (1992). Hypertonic stress induces αB-crystallin expression. Experimental eye research, 54(3), 461-470. https://doi.org/10.1016/0014-4835(92)90058-Z
- Dimauro, I., & Caporossi, D. (2022). Alpha B-crystallin in muscle disease prevention: the role of physical activity. Molecules, 27(3), 1147. https://doi.org/10.3390/molecules27031147
- Dodd, S. L., Hain, B., Senf, S. M., & Judge, A. R. (2009). Hsp27 inhibits IKKβ-induced NF-κB activity and skeletal muscle atrophy. The FASEB Journal, 23(10), 3415. https://doi.org/10.1096%2Ffj.08-124602
- Dumont, D., Noben, J. P., Moreels, M., Vanderlocht, J., Hellings, N., Vandenabeele, F., ... & Robben, J. (2007). Characterization of mature rat oligodendrocytes: a proteomic approach. Journal of neurochemistry, 102(2), 562-576. https://doi.org/10.1111/j.1471-4159.2007.04575.x
- Fittipaldi S, Mercatelli N, Dimauro I, Jackson MJ, Paronetto MP, Caporossi D. Alpha B-crystallin induction in skeletal muscle cells under redox imbalance is mediated by a JNK-dependent regulatory mechanism. Free Radic Biol Med. 2015 Sep;86:331-42. https://doi.org/10.1016/j.freeradbiomed.2015.05.03
- Garrido, C., Schmitt, E., Candé, C., Vahsen, N., Parcellier, A., & Kroemer, G. (2003). HSP27 and HSP70: potentially oncogenic apoptosis inhibitors. Cell cycle, 2(6), 578-583. https://doi.org/10.4161/cc.2.6.521
- Ghosh, J. G., Shenoy, A. K., & Clark, J. I. (2007). Interactions between important regulatory proteins and human αB crystallin. Biochemistry, 46(21), 6308-6317. https://doi.org/10.1021/bi700149h
- Hamann, S., Métrailler, S., Schorderet, D. F., & Cottet, S. (2013). Analysis of the cytoprotective role of α- crystallins in cell survival and implication of the αAcrystallin C-terminal extension domain in preventing Bax-induced apoptosis. PloS one, 8(2), e55372. https://doi.org/10.1371/journal.pone.0055372
- Ito, H., Kamei, K., Iwamoto, I., Inaguma, Y., Garcia-Mata, R., Sztul, E., & Kato, K. (2002). Inhibition of proteasomes induces accumulation, phosphorylation, and recruitment of HSP27 and αβ-crystallin to aggresomes. The journal of biochemistry, 131(4), 593-603. https://doi.org/10.1093/oxfordjournals.jbchem.a003
- Kamradt, M. C., Chen, F., Sam, S., & Cryns, V. L. (2002). The small heat shock protein αB-crystallin negatively regulates apoptosis during myogenic differentiation by inhibiting caspase-3 activation. Journal of Biological Chemistry, 277(41), 38731-38736. https://doi.org/10.1074/jbc.M201770200
- Kannan, R., Sreekumar, P. G., & Hinton, D. R. (2012). Novel roles for α-crystallins in retinal function and disease. Progress in retinal and eye research, 31(6), 576–604. https://doi.org/10.1016/j.preteyeres.2012.06.001
- Launay, N., Goudeau, B., Kato, K., Vicart, P., & Lilienbaum, A. (2006). Cell signaling pathways to αB-crystallin following stresses of the cytoskeleton. Experimental cell research, 312(18), 3570-3584. https://doi.org/10.1016/j.yexcr.2006.07.025
- Li, D. W. C., Liu, J. P., Mao, Y. W., Xiang, H., Wang, J., Ma, W. Y., ... & Reed, J. C. (2005). Calciumactivated RAF/MEK/ERK signaling pathway mediates p53-dependent apoptosis and is abrogated by αB-crystallin through inhibition of RAS activation. Molecular biology of the cell, 16(9), 4437-4453. https://doi.org/10.1091/mbc.e05-01-0010
- Liu, S., Li, J., Tao, Y., & Xiao, X. (2007). Small heat shock protein αB-crystallin binds to p53 to sequester its translocation to mitochondria during hydrogen peroxide-induced apoptosis. Biochemical and biophysical research communications, 354(1), 109-114. https://doi.org/10.1016/j.bbrc.2006.12.152 MacRae, T. H. (2000). Structure and function of small heat shock/α-crystallin proteins: established concepts and emerging ideas. Cellular and Molecular Life Sciences CMLS, 57, 899-913. https://doi.org/10.1007/PL00000733
- Mao, Y. W., Liu, J. P., Xiang, H., & Li, D. W. (2004). Human αA-and αB-crystallins bind to Bax and Bcl- XS to sequester their translocation during staurosporine-induced apoptosis. Cell Death & Differentiation, 11(5), 512-526. https://doi.org/10.1038/sj.cdd.4401384
- Mehlen, P., Kretz‐Remy, C., Preville, X., & Arrigo, A. P. (1996). Human hsp27, Drosophila hsp27 and human alphaB‐crystallin expression‐mediated increase in glutathione is essential for the protective activity of these proteins against TNFalpha‐induced cell death. The EMBO journal, 15(11), 2695-2706. https://doi.org/10.1002/j.1460-2075.1996.tb00630.x
- Morrison, L. E., Hoover, H. E., Thuerauf, D. J., & Glembotski, C. C. (2003). Mimicking phosphorylation of αB-crystallin on serine-59 is necessary and sufficient to provide maximal protection of cardiac myocytes from apoptosis. Circulation research, 92(2), 203-211. https://doi.org/10.1161/01.RES.0000052989.83995.A5
- Morozov, V., & Wawrousek, E. F. (2006). Caspasedependent secondary lens fiber cell disintegration inαA-/αB-crystallin double-knockout mice. https://doi.org/10.1242/dev.02262
- Nagaraj, R. H., Nahomi, R. B., Mueller, N. H., Raghavan, C. T., Ammar, D. A., & Petrash, J. M. (2016). Therapeutic potential of α-crystallin. Biochimica et biophysica acta, 1860(1 Pt B), 252–257. https://doi.org/10.1016/j.bbagen.2015.03.012
- Nahomi, R. B., Oya-Ito, T., & Nagaraj, R. H. (2013). The combined effect of acetylation and glycation on the chaperone and anti-apoptotic functions of human α-crystallin. Biochimica et Biophysica Acta (BBA)-Molecular Basis of Disease, 1832(1), 195-203. https://doi.org/10.1016/j.bbadis.2012.08.015
- Nath, M., Sluzala, Z. B., Phadte, A. S., Shan, Y., Myers, A. M., & Fort, P. E. (2022). Evidence for Paracrine Protective Role of Exogenous αA-Crystallin in Retinal Ganglion Cells. Eneuro, 9(2). https://doi.org/10.1523/ENEURO.0045-22.2022
- Pasupuleti, N., Matsuyama, S., Voss, O., Doseff, A. I., Song, K., Danielpour, D., & Nagaraj, R. H. (2010). The anti-apoptotic function of human αA-crystallin is directly related to its chaperone activity. Cell death & disease, 1(3), e31-e31. https://doi.org/10.1038/cddis.2010.3
- Phadte, A. S., Sluzala, Z. B., & Fort, P. E. (2021). Therapeutic potential of α-crystallins in retinal neurodegenerative diseases. Antioxidants, 10(7), 1001. https://doi.org/10.3390/antiox10071001
- Piri, N., Kwong, J. M., Gu, L., & Caprioli, J. (2016). Heat shock proteins in the retina: focus on HSP70 and alpha crystallins in ganglion cell survival. Progress in retinal and eye research, 52, 22-46. https://doi.org/10.1016/j.preteyeres.2016.03.001
- Ruebsam, A., Dulle, J. E., Myers, A. M., Sakrikar, D., Green, K. M., Khan, N. W., ... & Fort, P. E. (2018). A specific phosphorylation regulates the protective role of αA-crystallin in diabetes. JCI insight, 3(4). https://doi.org/10.1172%2Fjci.insight.97919
- Schaefer, H., Marcus, K., Sickmann, A., Herrmann, M., Klose, J., & Meyer, H. E. (2003). Identification of phosphorylation and acetylation sites in αacrystallin of the eye lens (mus musculus) after twodimensional gel electrophoresis. Analytical and bioanalytical chemistry, 376, 966-972. https://doi.org/10.1007/s00216-003-1983-1
- Sharma, K. K., & Santhoshkumar, P. (2009). Lens aging: effects of crystallins. Biochimica et Biophysica Acta (BBA)-General Subjects, 1790(10), 1095-1108. https://doi.org/10.1016/j.bbagen.2009.05.008
- Takemoto, L. J. (1997). Changes in the C-terminal region of alpha-A crystallin during human cataractogenesis. The International Journal of Biochemistry & Cell Biology, 29(2), 311-315. https://doi.org/10.1016/S1357-2725(96)00111-2
- Wang, F., Chen, X., Li, C., Sun, Q., Chen, Y., Wang, Y., ... & Zhang, H. (2014). Pivotal role of augmented αB-crystallin in tumor development induced by deficient TSC1/2 complex. Oncogene, 33(34), 4352-4358. https://doi.org/10.1038/onc.2013.401
- Webster, K. A. (2003). Serine phosphorylation and suppression of apoptosis by the small heat shock protein αB-crystallin. Circulation research, 92(2), 130-132. https://doi.org/10.1161/01.RES.0000056967.51841.21
- Whiston, E. A., Sugi, N., Kamradt, M. C., Sack, C., Heimer, S. R., Engelbert, M., ... & Gregory, M. S. (2008). αB-crystallin protects retinal tissue during Staphylococcus aureus-induced endophthalmitis. Infection and immunity, 76(4), 1781-1790. https://doi.org/10.1128/iai.01285-07
- Xia, X. Y., Wu, Q. Y., An, L. M., Li, W. W., Li, N., Li, T. F., ... & Xue, C. Y. (2014). A novel P20R mutation in the alpha-B crystallin gene causes autosomal dominant congenital posterior polar cataracts in a Chinese family. BMC ophthalmology, 14, 1-7. https://doi.org/10.1186/1471-2415-14-108
- Ying, X., Peng, Y., Zhang, J., Wang, X., Wu, N., Zeng, Y., & Wang, Y. (2014). Endogenous α-crystallin inhibits expression of caspase-3 induced by hypoxia in retinal neurons. Life sciences, 111(1-2), 42-46. https://doi.org/10.1016/j.lfs.2014.07.008