Elucidating the Role of Secondary Metabolite and Reactive Oxygen Species in High-Temperature Stress on Medicinal Plants
Автор: Pooja Tamta, Babita Patni
Журнал: Журнал стресс-физиологии и биохимии @jspb
Статья в выпуске: 4 т.16, 2020 года.
Бесплатный доступ
Worldwide warming is anticipated to have a typically terrible impact on plant development because of the harmful impact of excessive temperatures on plant improvement. Plants' diversity and productivity are adversely suffering from abiotic environmental factors. Thermal /heat stress is now becoming the main concern for plants everywhere, Major reason behind this is sudden changes in weather and climate which affects medicinal plants around the world and will eventually cause the destruction of some key species. The growing risk of climatological extremes such as very excessive temperatures might result in a catastrophic lack of crop productiveness and bring about extensive famine. Within the boom situation of plant life, several secondary metabolites are produced with the aid of them to serve a ramification of cell capabilities vital for physiological approaches, and the latest growing proof has implicated stress reaction. The medicinal plants comprise bioactive PSNPs, which perform a key role in plant life with the altering environment and stress condition. Within past decades, various studies advertised the healing properties and biological activities of medicinal plants. Excessive levels of pressure in medicinal vegetation exploitation caused by abiotic stress outcomes with the production of ROS inside the cell chambers of a plant cell which ultimately have a tremendous effect on secondary metabolite production. In this article, we have focused on what is the role of secondary metabolite and ROS generation in protecting the plant under the high stressful condition of heat.
RPSMs, plant secondary metabolites, heat stress, ROS, RNS, oxidative stress
Короткий адрес: https://sciup.org/143173858
IDR: 143173858
Список литературы Elucidating the Role of Secondary Metabolite and Reactive Oxygen Species in High-Temperature Stress on Medicinal Plants
- Agostini-Costa, T. D. S., Vieira, R. F., Bizzo, H. R., Silveira, D., & Gimenes, M. A. (2012). Chromatography and its applications. In: Dhanarasu S (ed) Plant secondary metabolites, In Tech Publisher, Rijeka, Croatia, pp. 131-164.
- Apel, K., & Hirt, H. (2004). REACTIVE OXYGEN SPECIES: Metabolism, Oxidative Stress, and Signal Transduction. Annual Review of Plant Biology, 55(1), 373–399.
- Ashraf, M, & Athar, H, & Harris, P. & Kwon, T.R.. (2008). Some Prospective Strategies for Improving Crop Salt Tolerance. Advances in Agronomy. 97. 45-110. 1
- Ashraf, M., Iqbal, M., Rasheed, R., Hussain, I., Riaz, M. & Arif, M. (2018). Environmental Stress and Secondary Metabolites in Plants. In: Plant Metabolites and Regulation Under Environmental Stress. pp. 153-167 10.1016/B978-0-12-812689-9.00008-X.
- Belhadj Slimen, I., Najar, T., Ghram, A., Dabbebi, H., Ben Mrad, M., & Abdrabbah, M. (2014). Reactive oxygen species, heat stress and oxidativeinduced mitochondrial damage. A review. International journal of hyperthermia, 30(7), 513-523.
- Coley, P. D. (1987). Interspecific variation in plant antiherbivore properties: the role of habitat quality and rate of disturbance. New phytologist, 106, 251-263.
- Crozier, A., Clifford, M. N., & Ashihara, H. (Eds.). (2006). Plant Secondary Metabolites. Blackwell Publishing, 382 p.
- Edreva, A., Velikova, V., Tsonev, T., Dagnon, S., Gürel, A., Aktaş, L., & Gesheva, E. (2008). Stressprotective role of secondary metabolites: diversity of functions and mechanisms. Gen Appl Plant Physiol, 34(1-2), 67-78.
- Fancy, N. N., Bahlmann, A. K., & Loake, G. J. (2017). Nitric oxide function in plant abiotic stress. Plant, Cell & Environment, 40(4), 462-472.
- Fang, X, Yang, CMAQ, Yang, L, Chen, X (2011) Genomics grand for diversified plant secondary metabolites. Plant Divers Resour 33, 53–64
- Gella, A., & Durany, N. (2009). Oxidative stress in Alzheimer disease. Cell adhesion & migration, 3(1), 88-93.
- Gupta, D. K., Palma, J. M., & Corpas, F. J. (Eds.). (2016). Redox state as a central regulator of plant-cell stress responses. Springer. pp. 1-386
- Hansen, J., Ruedy, R., Sato, M., Lo, K. (2010). Global surface temperature change. Rev. Geophys. 48 (4), RG4004.
- Hariyadi, P., Parkin, K.L. (1991) Chilling-induced Oxidative stress in cucumber fruits. Postharvest Biol. Techn. 1, 33–45
- Hartley et al., 2000 Hartley‐Whitaker, J., Ainsworth, G., & Meharg, A. A. (2001). Copper‐and arsenateinduced oxidative stress in Holcus lanatus L. clones with differential sensitivity. Plant, Cell & Environment, 24(7), 713-722.
- Hopkins D. P., Cameron D. D., Butlin R. K. (2017). The chemical signatures underlying host plant discrimination by aphids. Sci. Rep. 7, 8498.
- Jajic, I., Sarna, T., & Strzalka, K. (2015). Senescence, Stress, and Reactive Oxygen Species. Plants, 4(3), 393–411.
- Kliebenstein, D. J. (2013). Making new molecules— evolution of structures for novel metabolites in plants. Current opinion in plant biology, 16(1), 112-117.
- Kurepin, L. V., Ivanov, A. G., Zaman, M., Pharis, R. P., Hurry, V., & Hüner, N. P. (2017). Interaction of glycine betaine and plant hormones: protection of the photosynthetic apparatus during abiotic stress. In Photosynthesis: Structures, mechanisms, and applications . Springer, Cham. pp. 185-202
- Lambers, H. (1993). Rising CO2, secondary plant metabolism, plant-herbivore interactions and litter decomposition. In CO2 and Biosphere Springer, Dordrecht. pp. 263-271
- Lambers, H., Van der Werf, A., & Bergkotte, M. (1993). Respiration: the alternative pathway. Methods in Comparative Plant Ecology. Chapman & Hall, London, 140-144.
- Laughlin, 1993; Laughlin, J. C. (1994). Agricultural production of artemisinin—a review. Transactions of the Royal Society of Tropical Medicine and Hygiene, 88, 21-22.
- Levine L. H., Kasahara H., Kopka J., Erban A., Fehrl I., Kaplan F. (2008). Physiologic and metabolic responses of wheat seedlings to elevated and super-elevated carbon dioxide. Adv. Space Res. 42, 1917–1928.
- Li, Z., & Sharkey, T. D. (2013). Molecular and pathway controls on biogenic volatile organic compound emissions. In Biology, controls and models of tree volatile organic compound emissions . Springer, Dordrecht. pp. 119-151
- Lommen, W. J. M., Bouwmeester, H. J., Schenk, E., Verstappen, F. W. A., Elzinga, S., & Struik, P. C. (2008). Modelling processes determining and limiting the production of secondary metabolites during crop growth: the example of the antimalarial artemisinin produced in Artemisia annua. Acta Horticulturae, 765, 87-94.
- Loreto, F., & Schnitzler, J. P. (2010). Abiotic stresses and induced BVOCs. Trends in plant science, 15(3), 154-166.
- Narayanan, S., Tamura, P. J., Roth, M. R., Prasad, P. V., & Welti, R. (2016). Wheat leaf lipids during heat stress: I. High day and night temperatures result in major lipid alterations. Plant, Cell & Environment, 39(4), 787–803.
- Pérez-Estrada, L. B., Cano-Santana, Z., & Oyama, K. (2000). Variation in leaf trichomes of Wigandia urens: environmental factors and physiological consequences. Tree Physiology, 20(9), 629-632.
- Ramakrishna, A., & Ravishankar, G. A. (2011). Influence of abiotic stress signals on secondary 426 metabolites in plants. Plant Signaling & Behavior, 6(11), 1720 1731.
- Raupach, M. R., Marland, G., Ciais, P., Le Quéré, C., Canadell, J. G., Klepper, G., & Field, C. B. (2007). Global and regional drivers of accelerating CO2 emissions. Proceedings of the National Academy of Sciences of the United States of America, 104, 10288– 10293.
- Singsaas, E. L. (2000). Terpenes and the thermotolerance of photosynthesis. New Phytologist, 146(1), 1-2.
- Siwko, M. E., Marrink, S. J., de Vries, A. H., Kozubek, A., Uiterkamp, A. J. S., & Mark, A. E. (2007). Does isoprene protect plant membranes from thermal shock? A molecular dynamics study. Biochimica et Biophysica Acta (BBA)-Biomembranes, 1768(2), 198-206.
- Streb P., Cornic G., Bligny R. (2019) How do plants cope with alpine stress? Encyclopédie de l'environnement URL: https://www.encyclopedieenvironnement. org/en/life/how-do-plants-copewith-alpine-stress/ (accessed 22 November 2020)
- Suzuki, N., & Mittler, R. (2006). Reactive oxygen species and temperature stresses: a delicate balance between signaling and destruction. Physiologia plantarum, 126(1), 45-51.
- Wang, C. H., Wu, S. B., Wu, Y. T., & Wei, Y. H. (2013). Oxidative stress response elicited by mitochondrial dysfunction: implication in the pathophysiology of aging. Experimental biology and medicine, 238(5), 450-460.
- Ziogas, V., Tanou, G., Filippou, P., Diamantidis, G., Vasilakakis, M., Fotopoulos, V., & Molassiotis, A. (2013). Nitrosative responses in citrus plants exposed to six abiotic stress conditions. Plant Physiology and Biochemistry, 68, 118–126.