Enhancing Mobile Software Developer Selection through Integrated F-AHP and F-TOPSIS Methods

Автор: Murnawan, Vaya Viora Novitasari

Журнал: International Journal of Information Engineering and Electronic Business @ijieeb

Статья в выпуске: 4 vol.16, 2024 года.

Бесплатный доступ

This study delves into the impact of employee recruiting within the dynamic and fiercely competitive realm of information technology (IT), focusing on the role of mobile software developers in a software development company situated in Bandung, Indonesia. Given that the quality of employees and their alignment with organizational needs are pivotal drivers of productivity and overall performance, the recruitment process assumes paramount importance. However, this process is riddled with complexity and challenges, stemming from the need to define precise criteria and navigate decision-making amidst uncertainty and ambiguity. To confront these challenges, this research advocates for the utilization of the Fuzzy Analytic Hierarchy Process (F-AHP) and Fuzzy Technique for Order of Preference by Similarity to Ideal Solution (F-TOPSIS). The F-AHP method, employing Chang's extent analysis approach, assists in establishing weights for uncertain criteria. Meanwhile, F-TOPSIS is leveraged to evaluate alternatives based on predefined criteria. The focal point of this study is the selection of mobile software developers within a software development company in Bandung, Indonesia. Decision-makers, drawing insights from policy documents and assessment forms, identified pertinent criteria and sub-criteria. Utilizing F-AHP, they determined the weights for criteria and sub-criteria through paired comparisons using fuzzy numbers. Subsequently, F-TOPSIS was applied to rank 10 mobile software developer candidates, culminating in the identification of alternative-7 (CK-7) as the top mobile software developer candidate. In essence, the application of F-AHP and F-TOPSIS methods presents an effective approach to navigate the complexity of Multi-Criteria Decision Making (MCDM) in employee selection, particularly within the competitive landscape of the information technology industry. This study's findings underscore the significance of employing advanced decision-making techniques to enhance the efficiency and effectiveness of employee recruitment processes, thereby bolstering organizational performance and competitiveness.

Еще

Employee Selection, Extent Analysis, Fuzzy Analytic Hierarchy Process (F-AHP), Fuzzy Technique for Order of Preference by Similarity to Ideal Solution (F-TOPSIS), Mobile Software Developer Selection

Короткий адрес: https://sciup.org/15019422

IDR: 15019422   |   DOI: 10.5815/ijieeb.2024.04.01

Список литературы Enhancing Mobile Software Developer Selection through Integrated F-AHP and F-TOPSIS Methods

  • L. A. Zadeh, “Fuzzy sets,” Information and Control, vol. 8, no. 3, pp. 338–353, 1965, doi: 10.1016/S0019-9958(65)90241-X.
  • L. A. Zadeh, “Fuzzy Logic, Neural Networks, and Soft Computing,” Communications of the ACM, vol. 37, no. 3, 1994, doi: 10.1145/175247.175255.
  • Y. Wang et al., “Abstract intelligence: Embodying and enabling cognitive systems by mathematical engineering,” International Journal of Cognitive Informatics and Natural Intelligence, vol. 11, no. 1, 2017, doi: 10.4018/IJCINI.2017010101.
  • R. Cheng, R. Zhu, Y. Tian, B. Kang, and J. Zhang, “A multi-criteria group decision-making method based on OWA aggregation operator and Z-numbers,” Soft Computing, vol. 27, no. 3, 2023, doi: 10.1007/s00500-022-07667-8.
  • N. Quang Vinh, Q. H. Do, and L. M. Hien, “An integrated fuzzy AHP and fuzzy TOPSIS approach in the hotel industry,” International Journal of Advanced and Applied Sciences, vol. 9, no. 10, 2022, doi: 10.21833/ijaas.2022.10.017.
  • D. S. Utomo, D. Cahyadi, I. F. Astuti, and G. M. Putra, “Selection of Promotional Media on Tourist Boats with Fuzzy AHP and Fuzzy TOPSIS,” International Journal of ADVANCED AND APPLIED SCIENCES, vol. 10, no. 5, 2023, doi: 10.21833/ijaas.2023.05.017.
  • T. L. Satty, Group decision making and the AHP The analytic hierarchy process. 1989.
  • T. L. Saaty, “Correction to: Some mathematical concepts of the analytic hierarchy process,” Behaviormetrika, vol. 48, no. 1, 2021, doi: 10.1007/s41237-020-00125-5.
  • N. T. Pham et al., “Research on knowledge management models at universities using fuzzy analytic hierarchy process (FAHP),” Sustainability (Switzerland), vol. 13, no. 2, 2021, doi: 10.3390/su13020809.
  • T. T. Hue et al., “Prioritization of Factors Impacting Lecturer Research Productivity Using an Improved Fuzzy Analytic Hierarchy Process Approach,” Sustainability (Switzerland), vol. 14, no. 10, 2022, doi: 10.3390/su14106134.
  • S. Barbounaki and A. Sarantaki, “Construction and validation of a preterm birth risk assessment model using fuzzy analytic hierarchy process,” Bosnian Journal of Basic Medical Sciences, vol. 22, no. 2, 2022, doi: 10.17305/bjbms.2021.6431.
  • M. Marzouk, N. Elshaboury, S. Azab, A. Megahed, and M. Metawie, “Assessment of COVID-19 impact on sustainable development goals indicators in Egypt using fuzzy analytic hierarchy process,” International Journal of Disaster Risk Reduction, vol. 82, 2022, doi: 10.1016/j.ijdrr.2022.103319.
  • A. G. Abdullah, A. H. Setiorini, N. A. Dwitasari, D. L. Hakim, and M. Aziz, “Location suitability analysis for wind farm exploitation using fuzzy analytic hierarchy process,” Indonesian Journal of Science and Technology, vol. 6, no. 3, 2021, doi: 10.17509/ijost.v6i3.38957.
  • F. Kutlu Gündoğdu, S. Duleba, S. Moslem, and S. Aydın, “Evaluating public transport service quality using picture fuzzy analytic hierarchy process and linear assignment model,” Applied Soft Computing, vol. 100, 2021, doi: 10.1016/j.asoc.2020.106920.
  • M. Z. Djordjevic, A. Djordjevic, E. Klochkova, and M. Misic, “Application of Modern Digital Systems and Approaches to Business Process Management,” Sustainability (Switzerland), vol. 14, no. 3, 2022, doi: 10.3390/su14031697.
  • A. Gupta, R. K. Singh, and S. Gupta, “Developing human resource for the digitization of logistics operations: readiness index framework,” International Journal of Manpower, vol. 43, no. 2, 2022, doi: 10.1108/IJM-03-2021-0175.
  • K. Yoon and C.-L. Hwang, Multiple Attribute Decision Making. 2011. doi: 10.4135/9781412985161.
  • R. Mitra, J. Das, and M. Kamruzzaman, “Application of TOPSIS method for flood susceptibility mapping using Excel and GIS,” MethodsX, vol. 11, 2023, doi: 10.1016/j.mex.2023.102263.
  • H. M. Putri, “Identifikasi Pemenang Tender Pengadaan Barang Menggunakan Metode TOPSIS,” KESATRIA : Jurnal Penerapan Sistem Informasi (Komputer & Manajemen), vol. 4, no. 1, 2023.
  • Y. Zhu, C. Chen, G. Zhang, Z. Lin, S. G. Meshram, and E. Alvandi, “Investigation of West Lake Ecotourism Capabilities Using SWOT and TOPSIS Decision-Making Methods,” Sustainability (Switzerland), vol. 15, no. 3, 2023, doi: 10.3390/su15032464.
  • M. Marzouk, M. El-Maraghy, and M. Metawie, “Assessing retrofit strategies for mosque buildings using TOPSIS,” Energy Reports, vol. 9, 2023, doi: 10.1016/j.egyr.2022.12.073.
  • S. Singh, V. Agrawal, K. K. Saxena, and K. A. Mohammed, “Optimization on Manufacturing Processes at Indian Industries Using TOPSIS,” Indian Journal of Engineering and Materials Sciences, vol. 30, no. 1, 2023, doi: 10.56042/ijems.v1i1.61931.
  • S. Fanaei, A. Zareiyan, S. Shahraki, and A. Mirzaei, “Determining the key performance indicators of human resource management of military hospital managers; a TOPSIS study,” BMC Primary Care, vol. 24, no. 1, 2023, doi: 10.1186/s12875-023-02007-7.
  • K. M. Doka, F. Ahmad, S. N. Wan Shamsuddin, W. S. Wan Awang, and N. Ghazali, “Integrated decision support system for human resource selection using TOPSIS based models,” Applied Mathematical Sciences, vol. 9, no. 129, 2015, doi: 10.12988/ams.2015.53288.
  • A. I. Khan et al., “Integrating Blockchain Technology Into Healthcare Through an Intelligent Computing Technique,” Computers, Materials and Continua, vol. 70, no. 2, 2022, doi: 10.32604/cmc.2022.020342.
  • A. Saxena and A. K. Yadav, “Evaluating the Appropriate Fuel-Based Bus Technology in Indian Context by Integrating Fuzzy AHP-Fuzzy TOPSIS,” European Transport - Trasporti Europei, no. 92, 2023, doi: 10.48295/ET.2023.92.6.
  • H. Alhassan, N. Peleato, and R. Sadiq, “Mercury Risk Reduction in Artisanal and Small-Scale Gold Mining: A Fuzzy AHP-Fuzzy TOPSIS Hybrid Analysis,” Resources Policy, vol. 83, 2023, doi: 10.1016/j.resourpol.2023.103744.
  • N. Mehdiyev, “Selection Core Banking System by Using Fuzzy AHP and Fuzzy TOPSIS Hybrid Method,” in Lecture Notes in Networks and Systems, 2023. doi: 10.1007/978-3-031-25252-5_67.
  • V. Kukreja, “Hybrid Fuzzy AHP–TOPSIS Approach to Prioritizing Solutions for Inverse Reinforcement Learning,” Complex and Intelligent Systems, vol. 9, no. 1, 2023, doi: 10.1007/s40747-022-00807-5.
  • M. Sequeira, A. Adlemo, and P. Hilletofth, “A Hybrid Fuzzy-AHP-TOPSIS Model for Evaluation of Manufacturing Relocation Decisions,” Operations Management Research, vol. 16, no. 1, 2023, doi: 10.1007/s12063-022-00284-6.
  • N. L. Rane and S. P. Choudhary, “Fuzzy AHP and Fuzzy TOPSIS as an Effective and Powerful Multi-Criteria Decision-Making (MCDM) Method for Subjective Judgements in Selection Process,” International Research Journal of Modernization in Engineering Technology and Science, 2023, doi: 10.56726/irjmets36629.
  • S. Swethaa and A. Felix, “An Intuitionistic Dense Fuzzy AHP-TOPSIS Method for Military Robot Selection,” Journal of Intelligent and Fuzzy Systems, vol. 44, no. 4, 2023, doi: 10.3233/JIFS-223622.
  • P. Li, S. A. Edalatpanah, A. Sorourkhah, S. Yaman, and N. Kausar, “An Integrated Fuzzy Structured Methodology for Performance Evaluation of High Schools in a Group Decision-Making Problem,” Systems, vol. 11, no. 3, 2023, doi: 10.3390/systems11030159.
  • M. H. Luc, Q. V. Nguyen, Q. H. Do, and T. Van Trang, “Evaluation of an Apartment Selection Model by Integrating Fuzzy AHP and Fuzzy TOPSIS,” International Journal of Fuzzy System Applications, vol. 11, no. 1, 2022, doi: 10.4018/IJFSA.313964.
  • N. Q. Trung and N. Van Thanh, “Evaluation of Digital Marketing Technologies with Fuzzy Linguistic MCDM Methods,” Axioms, vol. 11, no. 5, 2022, doi: 10.3390/axioms11050230.
  • R. Ulewicz, D. Siwiec, A. Pacana, M. Tutak, and J. Brodny, “Multi-Criteria Method for The Selection of Renewable Energy Sources in the Polish Industrial Sector,” Energies, vol. 14, no. 9, 2021, doi: 10.3390/en14092386.
  • S. H. Almotiri, “Integrated Fuzzy Based Computational Mechanism for the Selection of Effective Malicious Traffic Detection Approach,” IEEE Access, vol. 9, 2021, doi: 10.1109/ACCESS.2021.3050420.
  • N. M. T. Nong and D. S. Ha, “Application of MCDM methods to Qualified Personnel Selection in Distribution Science: Case of Logistics Companies,” Journal of Distribution Science, vol. 19, no. 8, 2021, doi: 10.15722/jds.19.8.202108.25.
  • Y. D. Uslu, E. Yılmaz, and P. Yiğit, “Developing Qualified Personnel Selection Strategies Using MCDM Approach: A University Hospital Practice,” in Strategic Outlook in Business and Finance Innovation: Multidimensional Policies for Emerging Economies, 2021. doi: 10.1108/978-1-80043-444-820211018.
  • M. M. I. Rahi, A. K. M. A. Ullah, and D. M. G. R. Alam, “A Decision Support System (DSS) for Interview-Based Personnel Selection Using Fuzzy TOPSIS Method,” in Lecture Notes in Networks and Systems, 2022. doi: 10.1007/978-981-19-2445-3_45.
  • A. Akmaludin, E. G. Sihombing, R. Rinawati, F. Handayanna, L. Sari Dewi, and E. Arisawati, “Generation 4.0 of the Programmer Selection Decision Support System: MCDM-AHP and ELECTRE-Elimination Recommendations,” International Journal of Advances in Applied Sciences, vol. 12, no. 1, 2023, doi: 10.11591/ijaas.v12.i1.pp48-59.
  • I. Ikah and R. Fitriani, “Penentuan Prioritas Kriteria Pada Proses Rekrutmen dan Seleksi Karyawan Menggunakan Metode Analytic Hierarchy Process di PT Citatah Tbk,” Jurnal Serambi Engineering, vol. 7, no. 2, 2022, doi: 10.32672/jse.v7i2.3957.
  • X. He, Z. Xie, and C. H. Wang, “Selection of New Employees in Environmental Technology Company by MCDM,” Journal of Environmental Protection and Ecology, vol. 22, no. 3, 2021.
  • T. Danişan, E. Özcan, and T. Eren, “Personnel Selection with Multi-Criteria Decision Making Methods in the Ready-to-Wear Sector,” Tehnicki Vjesnik, vol. 29, no. 4, 2022, doi: 10.17559/TV-20210816220137.
  • Y. Ozdemir and K. G. Nalbant, “Personnel Selection for Promotion using an Integrated Consistent Fuzzy Preference Relations - Fuzzy Analytic Hierarchy Process Methodology: A Real Case Study,” Asian Journal of Interdisciplinary Research, 2020, doi: 10.34256/ajir20117.
  • A. Raj Mishra, G. Sisodia, K. Raj Pardasani, and K. Sharma, “Multi-Criteria IT Personnel Selection on Intuitionistic Fuzzy Information Measures and ARAS Methodology,” Iranian Journal of Fuzzy Systems, vol. 17, no. 4, 2020, doi: 10.22111/ijfs.2020.5406.
  • T. Kaya and C. Kahraman, “Multicriteria Decision Making in Energy Planning Using a Modified Fuzzy TOPSIS Methodology,” Expert Systems with Applications, vol. 38, no. 6, 2011, doi: 10.1016/j.eswa.2010.11.081.
  • M. Sequeira, A. Adlemo, and P. Hilletofth, “A Hybrid Fuzzy-AHP-TOPSIS Model for Evaluation of Manufacturing Relocation Decisions,” Operations Management Research, vol. 16, no. 1, 2023, doi: 10.1007/s12063-022-00284-6.
  • D. Y. Chang, “Applications of The Extent Analysis Method on Fuzzy AHP,” European Journal of Operational Research, vol. 95, no. 3, 1996, doi: 10.1016/0377-2217(95)00300-2.
  • C. T. Chen, “Extensions of the TOPSIS for group decision-making under fuzzy environment,” Fuzzy Sets and Systems, vol. 114, no. 1, 2000, doi: 10.1016/S0165-0114(97)00377-1.
Еще
Статья научная