Ensembles of neural networks with application of multi-objective self-configurable genetic programming

Бесплатный доступ

In this article the integrated approach for automatic formation ensembles of neural networks is proposed. The applying multi-criteria “Self-configurable” genetic programming is described. To each new generated network the mostefficient (“best”) network is added, which by two criteria were estimated on the first stage of the algorithm. Thusa population of neuralnetwork ensembles is created. The criterion of effectiveness of new networks is the third criterion –the effectiveness of ensemble decision, which includes in this network ensemble. Thefinal ensemble with selected net-works by third criteria is created. Also in this article the approach forformation of ensemble decision using the decisions of an added neural networks – Scheme ED1 is applied. Proposed method ondifferent tasks with different amountof inputs and outputs signals (neurons) in ANN was tested. In the resultthis method shows high efficiency.

Еще

Forecasting problems, ensembles of artificial neural networks, self-configurable multi-criteria geneticprogramming

Короткий адрес: https://sciup.org/148177854

IDR: 148177854

Список литературы Ensembles of neural networks with application of multi-objective self-configurable genetic programming

  • Anderson D., McNeill G. Artificial neural networks technology. DACS report, 1992, P. 1-34.
  • Angeline P. J. Adaptive and self-adaptive evolutionary computations. Palaniswami M. and Attikiouzel Y. (Eds.) Computational Intelligence: A Dynamic Systems Perspective. IEEE Press, 1995, P. 152-163.
  • Yu J. J. Q., Lam A. Y. S., Li V. O. K. Evolutionary Artificial Neural Network Based on Chemical Reaction Optimization. IEEE Congress on Evolutionary Computation (CEC'2011), 2011, P. 12-16.
  • Albert Lam, Victor O. K. Li, James J. Q. Yu. Real-coded chemical reaction optimization. Evolutionary Computation, 2012, Vol. 16, Iss. 3, P. 339-353.
  • J. J. Q. Yu., Victor O. K. Li. A social spider algorithm for global optimization. Applied Soft Computing, 2015, Vol. 30, P. 614-627.
  • Holland J. H. Adaptation in Natural and Artificial System. University of Michigan Press, 1975, Р. 18-25.
  • Izeboudjen N., Larbes C., Farah A. A new classification approach for neural networks hardware: from standards chips to embedded systems on chip. Artificial Intelligence Review, 2014. Vol. 41, Iss. 4, P. 491-534.
  • Ashish G., Satchidanada D. Evolutionary Algorithm for Multi-Criterion Optimization: A Survey. International Journal of Computing & Information Science, 2004, Vol. 2, No. 1, P. 43-45.
  • Koza J. R. Genetic Programming. On the Programming of Computers by Means of Natural Selection, 1992, MIT Press, P. 109-120.
  • Huang J.-J., Tzeng G.-H., Ong Ch.-Sh. Two-stage genetic programming (2SGP) for the credit scoring model. Applied Mathematics and Computation, 2006, P. 1039-1053.
  • O'Neill M., Vanneschi L., Gustafson S., Banzhaf W. Open issues in genetic programming. In: Genetic Programming and Evolvable Machines, 2010, P. 339-363.
  • Semenkin E. S., Lipinsky L. V. ПРИМЕНЕНИЕ АЛГОРИТМА ГЕНЕТИЧЕСКОГО ПРОГРАММИРОВАНИЯ В ЗАДАЧАХ АВТОМАТИЗАЦИИ ПРОЕКТИРОВАНИЯ ИНТЕЛЛЕКТУАЛЬНЫХ ИНФОРМАЦИОННЫХ ТЕХНОЛОГИЙ. Vestnik SibGAU. 2006, No. 3 (10), P. 22-26 (In Russ.).
  • Loseva E. D. . Мaterialy XI Mezhdunar. nauch. konf. “Aktual'nye problemy aviatsii i kosmonavtiki” . Krasnoyarsk, 2015, P. 340-343 (In Russ.).
  • Land M. W. S. Evolutionary Algorithms with Local Search for Combinatorial Optimization. PhD thesis, Citeseer. A thesis investigation memetic algorithms in combinatorial optimization. 1998. P. 259-315.
  • A. Asuncion, D. Newman. UCI machine learning repository. University of California, Irvine, School of Information and Computer Sciences, 2007. Available at: http://www.ics.uci.edu/~mlearn/MLRepository.html (accessed 10.11.2015).
  • Anderson D., McNeill G. Artificial neural networks technology: DACS report, 1992. P. 1-34.
  • Angeline P. J. Adaptive and self-adaptive evolutionary computations/M. Palaniswami and Y. Attikiouzel (eds.)//Computational Intelligence: A Dynamic Systems Perspective. IEEE Press, 1995. P. 152-163.
  • Yu J. J. Q., Lam A. Y. S., Li V. O. K. Evolutionary Artificial Neural Network Based on Chemical Reaction Optimization//IEEE Congress on Evolutionary Computation (CEC'2011), 2011. P. 12-16.
  • Lam A., Li V. O. K., Yu J. J. Q. Real-coded chemical reaction optimization//Evolutionary Computation, 2012. Vol. 16, iss. 3. P. 339-353.
  • Yu J. J. Q., Li V. O. K. A social spider algorithm for global optimization//Applied Soft Computing, 2015. Vol. 30. P. 614-627.
  • Holland J. H. Adaptation in Natural and Artificial System//University of Michigan Press, 1975. P. 18-25.
  • Izeboudjen N., Larbes C., Farah A. A new classification approach for neural networks hardware: from standards chips to embedded systems on chip//Artificial Intelligence Review. 2014. Vol. 41, iss. 4, P. 491-534.
  • Ashish G., Satchidanada D. Evolutionary Algorithm for Multi-Criterion Optimization: A Survey//International Journal of Computing & Information Science. 2004. Vol. 2, No. 1. P. 43-45.
  • Koza J. R. Genetic Programming//On the Programming of Computers by Means of Natural Selection. MIT Press, 1992. P. 109-120.
  • Huang J.-J., Tzeng G.-H., Ong Ch.-Sh. Two-stage genetic programming (2SGP) for the credit scoring model//Applied Mathematics and Computation. 2006. P. 1039-1053.
  • Open issues in genetic programming/M. O'Neill //Genetic Programming and Evolvable Machines. 2010. P. 339-363.
  • Лосева Е. Д. Ансамбли нейросетевых моделей с применением многокритериального самоконфигурируемого эволюционного алгоритма//Актуальные проблемы авиации и космонавтики: материалы XI Междунар. науч. конф. (6-12 апр. 2015, г. Красноярск): в 2 ч./под общ. ред. Ю. Ю. Логинова; Сиб. гос. аэрокосмич. ун-т. Красноярск, 2015. С. 340-343.
  • Land M. W. S. Evolutionary Algorithms with Local Search for Combinatorial Optimization: PhD thesis, Citeseer. A thesis investigation memetic algorithms in combinatorial optimization. 1998. P. 259-315.
  • Asuncion A., Newman D. UCI machine learning repository /University of California, Irvine, School of Information and Computer Sciences, 2007. URL: http://www.ics.uci.edu/~mlearn/MLRepository.html (дата обращения: 10.11.2015).
Еще
Статья научная