Ensuring durability and reliability of contact rings of current collection devices when working in elastic-plastic state
Автор: Grishin A.А.
Журнал: Siberian Aerospace Journal @vestnik-sibsau-en
Рубрика: Aviation and spacecraft engineering
Статья в выпуске: 2 vol.25, 2024 года.
Бесплатный доступ
The reliability of ring current-collecting devices during a given service life plays a decisive role in the operation of power supply systems of various equipment and largely depends on the strength and reliability of all its components, in particular, contact rings. One of the most important characteristics of ring current collectors is the contact resistance, which is reduced by using non-ferrous and precious materials with low resistance, while increasing the downforce between the rings of the current collector. With an increase in the compression force F of the contact ring, the resistance of the contacts decreases to a certain minimum value and practically does not decrease with further growth of the force. The dependence of the contact resistance on the compression force has the form of a power function, the coefficients of which are determined experimentally. However, the operability of the contact rings in such severe conditions can be ensured in the case of low speeds and a small number of loading cycles by using the low-cycle fatigue area on the Weller curve. Having determined the coefficients of the equation of the inclined section on the Weller curve in the area of low-cycle fatigue, it is possible to determine the number of permissible loading cycles at a given stress level or solve the inverse problem of determining the permissible stress level if the number of loading cycles is known. To substantiate the correctness of the selected compressive force and the corresponding stresses, methods for calculating the fatigue margin coefficient, as well as a method for calculating the reliability of the ring material, are proposed. Reliability is estimated by the Gauss curve and is numerically expressed in the form of the probability of failure-free operation and the probability of failure, for which the corresponding theoretical dependencies are obtained. According to the proposed methods, calculations of the rings of the current-collection device used in EXPRESS-type spacecraft were performed, which showed the operability of the methods and allowed to ensure the required service life of the contact rings and their reliability. A very simple analytical formulation of the methods allows us to solve both verification and design calculations of rings, depending on the task at hand.
Ring current collector, contact ring, strength, plasticity, low cycle fatigue, reliability, probability of trouble-free operation
Короткий адрес: https://sciup.org/148329735
IDR: 148329735 | DOI: 10.31772/2712-8970-2024-25-2-190-201
Список литературы Ensuring durability and reliability of contact rings of current collection devices when working in elastic-plastic state
- Grishin A. A., Kudrjavcev I. V. [Ensuring the strength of the contact rings of current-removing devices of spacecraft]. Kosmonavtika i raketostroenie. 2018, Vol. 102, No. 3, P. 81–91 (In Russ.).
- Kosenko V. E. Akimov A. N., Vygotsky Yu. G. Razrabotka i vnedrenie v promyshlennoe proizvodstvo unifitsirovannoy vysokoenergeticheskoy kosmicheskoy platformy “Ekspress-2000” i sozdanie na ee baze sovremennykh, konkurentosposobnykh kosmicheskikh apparatov svyazi i telekommunikatsiy [Development and introduction into industrial production of the unified high-energy space platform Express-2000 and the creation of modern, competitive communication and telecommunications spacecraft on its basis]. Zheleznogorsk, JSC ISS., 2015, 100 p.
- Grishin A. A., Smirnov N. A., Kharitonov A. I. [Analysis of the design of ring current–removing devices]. Vestnik SibGAU. 2014, Vol. 57, No. 5, P. 146–153 (In Russ.).
- Grishin A. A. [Losses on current-carrying devices during the transmission of electric energy from solar panels to a spacecraft]. Trudy MAI. 2017. No. 97 (In Russ.). Available at: https://mai.ru/upload/iblock/240/Grishin_Strugavets_rus.pdf (accessed: 01.06.2024).
- Holmberg K. Tribological contact analysis of a rigid ball sliding on a hard coated surface. Part I: Modelling stresses and strains. Surf. Coat. Tech., 2006, Vol. 200, P. 3793–3809.
- Dragunov Yu. B., Zubchenko A. S., Kashirsky Yu. V. Marochnik staley i splavov [Marochnik of steels and alloys]. Moscow, Mashinostroenie Publ., 2014, 1216 p.
- Taev I. S. Osnovy teorii elektricheskikh apparatov [Fundamentals of the theory of electrical devices]. Moscow, Higher School Publ., 1987, 352 p.
- Gerasimov V. G. Elektricheskiy spravochnik v 3-kh t. T. 2. Elektrotekhnicheskie ustroystva [Electrical reference book in 3 volumes. Vol. 2. Electrical devices]. Moscow, Energoizdat Publ., 1981, 640 p.
- Demkin N. B. Kachestvo poverkhnosti i kontakt detaley mashin [Surface quality and contact of machine parts]. Moscow, Mashinostroenie Publ., 1981, 244 p.
- Komarov A. A. Elektricheskie kontakty [Electrical contacts]. Samara, SamIIT Publ., 2001, 51 p.
- Katsman M. M. Elektricheskie mashiny [Electric machines]. Moscow, Akademiya Publ., 2017, 496 p.
- Boychenko V. I. Kontaktnye soedineniya tokovedushchikh shin [Contact connections of current- carrying bus]. Leningrad, Energiya Publ., 1978, 144 p.
- Merl V. Elektricheskie kontakty [Electrical contacts]. Moscow, Gosenergoizdat Publ., 1962, 80 p.
- Bredikhin A. N. Elektricheskie kontaktnye soedineniya [Electrical contact connections]. Moscow, Energiya Publ., 1980, 168 p.
- Demkin N. B. Kontaktirovanie sherokhovatykh poverkhnostey [Contacting rough surfaces]. Moscow, Nauka Publ., 1970, 227 p.
- Shlykov Yu. P. Kontaktnoe i termicheskoe soprotivlenie [Contact and thermal resistance]. Moscow, Energiya Publ., 1977, 328 p.
- Kim E. I., Omelchenko V. G., Kharin S. N. Matematicheskie modeli protsessov v elektricheskikh kontaktakh [Mathematical models of processes in electrical contacts]. Alma-Ata, Nauka Publ, 1977, 236 p.
- Usov V. V. Metallovedenie elektricheskikh kontaktov [Metallology of electrical contacts]. Moscow, Gosenergoizdat Publ., 1963, 208 p.
- Feodosiev V. I. Soprotivlenie materialov [Resistance of materials]. Moscow, MSTU Publ., 1999, 592 p.
- Birger I. A., Shorr B. F., Iosilevich G. B. Raschet na prochnost' detaley mashin [Calculation of the strength of machine parts]. Moscow, Mashinostroenie Publ., 1993, 640 p.
- Heywood R. B. Proektirovanie s uchetom ustalosti [Fatigue-based design]. Moscow, Mashinostroenie Publ., 1982, 490 p.
- Troshchenko V. T. Prochnost' metallov pri peremennykh nagruzkakh [Strength of metals under variable loads]. Kiev, Nauk. Dumka Publ., 1978, 176 p.
- Golovin S. A., Pushkar A., Levin D. M. Uprugie i dempfiruyushchie svoystva konstruktsionnykh metallicheskikh materialov [Elastic and damping properties of structural metal materials]. Moscow, Metallurgy Publ., 1987, 190 p.
- Terentyev V. F., Korableva S. A. Ustalost' metallov [Fatigue of metals]. Moscow, Nauka Publ., 2015, 479 p.
- Zarubin B. C., Krishchenko A. P. Teoriya veroyatnostey [Probability theory]. Moscow, Bauman Moscow State Technical University Publ., 2004, 456 p.
- Wentzel E. S. Teoriya veroyatnostey [Probability theory]. Moscow, Vysshaya shkola Publ., 2001, 575 p.
- Dulnev R. A. Termicheskaya ustalost' materialov [Thermal fatigue of materials]. Moscow, Mashinostroenie Publ., 1980, 200 p.
- Zalessky A. M. Teplovye raschety elektricheskikh kontaktov [Thermal calculations of electrical contacts]. Leningrad, Energiya Publ., 1967. 380 p.