Ensuring the thermal regime of spacecraft structures
Автор: Shatrov A.K., Fisenko E.N., Rabetskaya O.I.
Журнал: Siberian Aerospace Journal @vestnik-sibsau-en
Рубрика: Aviation and spacecraft engineering
Статья в выпуске: 3 vol.24, 2023 года.
Бесплатный доступ
The main requirement for the smooth operation of the spacecraft is its stable thermal regime. A particularly difficult task is to ensure a stable temperature control system of the device, taking into account strict restrictions on energy and mass costs for temperature control devices. These tasks need to be solved at every stage of the creation of satellites. At each stage, thermal calculations are carried out with the choice of optimal thermophysical parameters. This amount of work is about a tenth of all work with the satellite. The need for theoretical and experimental refinement of calculation methods is an urgent task that will significantly reduce the material and time costs of designing, testing and fine-tuning the device. Therefore, the calculation and analysis of the thermal regimes of spacecraft is an important stage in the design of satellites. Ground thermal vacuum tests are very costly, both in time and financially. The essence of the concept is to conduct only stationary thermal modes under conditions of maximum and minimum thermal loads on the satellite as a whole and its individual external elements, followed by ensuring convergence of test results with calculated results. And the confirmation of intermediate requirements to ensure the specified thermal conditions is carried out by calculation. The article considers the tasks of ensuring the thermal regime of spacecraft structures. Classification of devices used to ensure the thermal regime. Ground-based testing of the thermal regime of communication satellites during thermal vacuum tests. Ensuring the thermal regime of the communication spacecraft during ground-based electrical tests. Thermal regime of spacecraft structures during transportation from the manufacturer to the technical position.
Spacecraft, thermal vacuum tests, thermal regime, temperature control system
Короткий адрес: https://sciup.org/148329699
IDR: 148329699 | DOI: 10.31772/2712-8970-2023-24-3-550-557
Список литературы Ensuring the thermal regime of spacecraft structures
- Ankudinov A. V. [The use of mathematical models and analysis methods to determine the design appearance of the spacecraft at the early stages of the life cycle]. Reshetnevskie chteniya: tez. dokladov Vseross.y nauch.-tekhn. konf. [Abstracts of reports of the All-Russian scientific and technical conference Reshetnev readings]. Is. 1. Krasnoyarsk, 1997, P. 74 (In Russ.).
- Shatrov A. K. Termostrukturnyy analiz antennykh blokov. Nauch.-tekh. otchet 33-1811-85 [Thermostructural analysis of antenna blocks. Sci.-tech. report 33-1811-85]. Krasnoyarsk, NPO PM, 1985, 80 p.
- Shatrov A. K. Raschet temperaturnykh deformatsiy berilievoy plity. Tekhnicheskiy otchet 33-3619-88 [Calculation of temperature deformations of beryllium plate, Technical report 33-3619-88]. Krasnoyarsk, NPO PM, 1988, 62 p.
- Shatrov A. K., Piskunov V. G., Sipetov V. S. [Experimental and theoretical study of ribbed flat shells in a stationary temperature field]. Prochnost' materialov i elementov konstruktsiy pri slozhnom napryazhennom sostoyanii: tez. dokl. Vsesoyuz. simp [All-Union Symposium Strength of materials and structural elements in a complex stress state]. Kiev, 1984, Part 11, P. 39.
- Smirnov-Vasiliev K. G., Dvirny V. V., Ovechkin G. I., Panov G. I. [Modeling the characteristics of heat pipes in the calculation of non-stationary temperature fields of structures with heat pipes]. Problemy obespecheniya kachestva izdeliy v mashinostroenii: sb. dokl. Mezhdunar. nauch.-tekhn. konf. Krasnoyarsk, 1994, P. 462–468 (In Russ.).
- [Testing of the thermal regime of communication satellites / A. K. Shatrov, E. N. Fisenko, O. I. Rabetskaya]. Reshetnevskie chteniya: materialy XXVI Mezhdunar. nauch.-prakt. konf., psvyashch. pamyati general'nogo kostruktora raketno-kosmicheskikh sistem akademika M. F. Reshetneva [Reshetnev readings: proceedings of XXVI International Scientific Conference]. Krasnoyarsk, 2022, Part 1, P. 357–359 (In Russ.).
- Butov V. G., Vasenina T. V., Kuvshinov N. E. et al. [Organization of a database for numerical modeling of temperature fields of spacecraft structural elements]. Vestn. Tomsk. gos. un-ta. Matem. I mekh. 2011, No. 4(16), P. 49–54 (In Russ.).
- Bykov A. P., Androsov S. V., Piganov M. N. [Methods of thermal vacuum tests of spacecraft instruments]. NiKSS. 2019, No. 3 (27), P. 78–83 (In Russ.).
- Teploobmen i teplovoy rezhim kosmicheskikh apparatov [Heat exchange and thermal regime of spacecraft]. Ed. N. A. Anfimov. Moscow, Mir Publ., 1974, 544 p.
- Bloch A. G., Zhuravlev Yu. A., Ryzhkov L. P. Teploobmen izlucheniem [Heat exchange by radiation]. Moscow, Energoatomizdat Publ., 1991, 432 p.
- Krushenko G. G., Golovanova V. V. [Improving the system of thermoregulation of spacecraft]. Vestnik SibGAU. 2014, No. 3 (55), P. 185–190 (In Russ.).
- Babysheva E. E. [Prospects for the development of satellite communications]. Economics and quality of communication systems. 2017. No. 3 (5).
- Burtyl I. V., Golikovskaya K. F. [Features of the execution of instrument compartments of spacecraft]. Actual problems of aviation and cosmonautics. 2012, No. 8, P. 48–49 (In Russ.).
- Dvirny V. V., Krushenko G. G., Dvirny G. V. et al. [Features of component systems for thermoregulation of spacecraft]. Kosmicheskie apparaty i tekhnologii. 2019, No. 1 (27), P. 13–21 (In Russ.).
- Aslanyan R. O., Anisimov D. I., Marchenko I. A., Panteleev V. I. [Solar radiation simulators for thermal vacuum tests of spacecraft]. Sibirskiy zhurnal nauki i tekhnologiy. 2017, Vol. 18, No. 2, P. 323–327 (In Russ.).
- Borisov M. V., Sadykov O. F. [Transport space system: tasks, structure, parameters]. Izvestiya Samarskogo nauchnogo tsentra RAN. 2019, No. 1, P. 72–80 (In Russ.).