Еще раз к задаче о полуплоскости, ослабленной полубесконечной трещиной, параллельной границе

Бесплатный доступ

Получено и исследовано однородное решение задачи о полубесконечной трещине, параллельной границе полуплоскости в условиях плоской деформации. Путем применения двухстороннего преобразования Лапласа задача была сведена к матричной задаче Римана [1–4]. Получены асимптотические выражения для напряжений вблизи кончика трещины (коэффициенты интенсивности напряжений, КИН) и асимптотические выражения для смещений берегов трещины вдали от ее кончика. Выражения для КИН совпадают с результатами работ [1–4]. Показано, что ведущие члены асимптотики смещений берегов трещины вдали от кончика соответствуют смещениям балки (пластины), подверженной действию главных вектора и момента при граничных условиях типа обобщенной упругой заделки, т.е. условиях пропорциональности угла поворота и двух компонент вектора смещений в точке заделки главному моменту и двум компонентам главного вектора внешней нагрузки. Данная связь выражается посредством матрицы 3×3 коэффициентов эффективной упругой заделки. Получены выражения для компонент данной матрицы в форме интегралов. Некоторые из компонент матрицы, для которых это возможно, вычислены также из сравнения скорости высвобождения упругой энергии, посчитанной через КИН и через работу сил при деформировании эквивалентной балки. Для трещины конечной длины, параллельной границе, полученные выражения компонент матрицы упругой заделки являются асимптотиками для длинных трещин. Проведено сравнение с имеющимися численными данными. Полученное решение представляется полезным для решения задач о деформировании балочных и консольных конструкций, а также задач об отслоении покрытий и потери ими устойчивости.

Еще

Отслоение, интерфейсная трещина, матричная факторизация, упругая заделка

Короткий адрес: https://sciup.org/146211494

IDR: 146211494

Статья научная