ESPM: A Model to Enhance Stroke Prediction with Analysis of Different Machine Learning Approaches and Hyperparameter Tuning

Автор: Amandeep Kaur, Komal Singh Gill

Журнал: International Journal of Mathematical Sciences and Computing @ijmsc

Статья в выпуске: 2 vol.10, 2024 года.

Бесплатный доступ

Stroke prediction is paramount in healthcare to enable timely intervention and reduce the burden of this devastating condition. This research paper examines the prediction of strokes using machine learning methods, aiming to enhance accuracy and efficiency in risk assessment. Numerous Machine Learning (ML) techniques, such as Support Vector Machine (SVM), XGBoost, Random Forest, Linear Regression, and Gaussian Naive Bayes, are explored using a comprehensive dataset containing patient demographics, medical history, lifestyle factors, and clinical measurements. Based on different ML models, an Enhanced Stroke Prediction Model (ESPM) is proposed. Grid search, Randomized search, and Bayesian optimization are employed as hyperparameter tuning techniques, and parameters like accuracy, precision, recall, and F1 score are analyzed. It is observed that SVM with Grid Search hyperparameter tunning performs well with an accuracy of 94.129%; Positive Predictive Value (PPV), True Positive Rate(TPR), and F1 Score achieved are 89%, 94%, and 91%, respectively. The outcomes demonstrate the suitability of these models for different aspects of stroke prediction, such as handling complex patterns, capturing non-linearity, robustness to noisy data, and modeling continuous risk scores.

Еще

Stroke prediction, Machine learning, SVM, Hyperparameter tuning

Короткий адрес: https://sciup.org/15019081

IDR: 15019081   |   DOI: 10.5815/ijmsc.2024.02.05

Список литературы ESPM: A Model to Enhance Stroke Prediction with Analysis of Different Machine Learning Approaches and Hyperparameter Tuning

  • M. Kaur, S. R. Sakhare, K. Wanjale, F. Akter, et al., “Early stroke prediction methods for prevention of strokes,” Behavioural Neurology, vol. 2022, 2022.
  • S. Dev, H. Wang, C. S. Nwosu, N. Jain, B. Veeravalli, and D. John, “A predictive analytics approach for stroke prediction using machine learning and neural networks,” Healthcare Analytics, vol. 2, p. 100032, 2022.
  • N. Biswas, K. M. M. Uddin, S. T. Rikta, and S. K. Dey, “A comparative analysis of machine learning classifiers for stroke prediction: A predictive analytics approach,” Healthcare Analytics, vol. 2, p. 100116, 2022.
  • Z. G. Al-Mekhlafi, E. M. Senan, T. H. Rassem, B. A. Mohammed, N. M. Makbol, A. A. Alanazi, T. S. Almurayziq, and F. A. Ghaleb, “Deep learning and machine learning for early detection of stroke and haemorrhage,” Computers, Materials and Continua, vol. 72, no. 1, pp. 775–796, 2022.
  • R. Chen, S. Zhang, J. Li, D. Guo, W. Zhang, X. Wang, D. Tian, Z. Qu, and X. Wang, “A study on predicting the length of hospital stay for chinese patients with ischemic stroke based on the xgboost algorithm,” BMC Medical Informatics and Decision Making, vol. 23, no. 1, pp. 1–10, 2023.
  • M. L. Wallace, L. Mentch, B. J. Wheeler, A. L. Tapia, M. Richards, S. Zhou, L. Yi, S. Redline, and D. J. Buysse, “Use and misuse of random forest variable importance metrics in medicine: demonstrations through incident stroke prediction,” BMC Medical Research Methodology, vol. 23, no. 1, p. 144, 2023.
  • S. Campagnini, C. Arienti, M. Patrini, P. Liuzzi, A. Mannini, and M. C. Carrozza, “Machine learning methods for functional recovery prediction and prognosis in post-stroke rehabilitation: A systematic review,” Journal of NeuroEngineering and Rehabilitation, vol. 19, no. 1, pp. 1–22, 2022.
  • S. Gupta and S. Raheja, “Stroke prediction using machine learning methods,” in 2022 12th International Conference on Cloud Computing, Data Science & Engineering (Confluence), pp. 553–558, IEEE, 2022.
  • P. Premisha, S. Prasanth, M. Kanagarathnam, and K. Banujan, “An ensemble machine learning approach for stroke prediction,” in 2022 International Research Conference on Smart Computing and Systems Engineering (SCSE), vol. 5, pp. 165–170, IEEE, 2022.
  • X. Zhang, N. Fei, X. Zhang, Q. Wang, and Z. Fang, “Machine learning prediction models for postoperative stroke in elderly patients: Analyses of the mimic database,” Frontiers in Aging Neuroscience, vol. 14, p. 897611, 2022.
  • M. Rajora, M. Rathod, and N. S. Naik, “Stroke prediction using machine learning in a distributed environment,” in Distributed Computing and Internet Technology: 17th International Conference, ICDCIT 2021, Bhubaneswar, India, January 7–10, 2021, Proceedings 17, pp. 238–252, Springer, 2021.
  • X. Huang, T. Cao, L. Chen, J. Li, Z. Tan, B. Xu, R. Xu, Y. Song, Z. Zhou, Z. Wang, et al., “Novel insights on establishing machine learning-based stroke prediction models among hypertensive adults,” Frontiers in Cardiovascular Medicine, vol. 9, p. 901240, 2022.
  • C. Kokkotis, G. Giarmatzis, E. Giannakou, S. Moustakidis, T. Tsatalas, D. Tsiptsios, K. Vadikolias, and N. Aggelousis, “An explainable machine learning pipeline for stroke prediction on imbalanced data,” Diagnostics, vol. 12, no. 10, p. 2392, 2022.
  • V. Abedi, V. Avula, D. Chaudhary, S. Shahjouei, A. Khan, C. J. Griessenauer, J. Li, and R. Zand, “Prediction of long-term stroke recurrence using machine learning models,” Journal of clinical medicine, vol. 10, no. 6, p. 1286, 2021.
  • M. S. Jabal, O. Joly, D. Kallmes, G. Harston, A. Rabinstein, T. Huynh, and W. Brinjikji, “Interpretable machine learning modeling for ischemic stroke outcome prediction,” Frontiers in neurology, vol. 13, p. 884693, 2022.
  • Q. Qin, X. Zhou, and Y. Jiang, “Prognosis prediction of stroke based on machine learning and explanation model,” INTERNATIONAL JOURNAL OF COMPUTERS COMMUNICATIONS & CONTROL, vol. 16, no. 2, 2021.
  • Z. Zhang and Z. Zou, “Prediction model of ischemic stroke based on machine learning,” Journal of Circuits, Systems and Computers, vol. 32, no. 05, p. 2350088, 2023.
  • S. Mainali, M. E. Darsie, and K. S. Smetana, “Machine learning in action: stroke diagnosis and outcome prediction,” Frontiers in Neurology, vol. 12, p. 734345, 2021.
  • R. Pitchai, B. Dappuri, P. Pramila, M. Vidhyalakshmi, S. Shanthi, W. B. Alonazi, K. Almutairi, R. Sundaram, I. Beyene, et al., “An artificial intelligence-based bio-medical stroke prediction and analytical system using a machine learning approach,” Computational Intelligence and Neuroscience, vol. 2022, 2022.
  • S. Cheon, J. Kim, and J. Lim, “The use of deep learning to predict stroke patient mortality,” International journal of environmental research and public health, vol. 16, no. 11, p. 1876, 2019.
  • G. Sailasya and G. L. A. Kumari, “Analyzing the performance of stroke prediction using ml classification algorithms,” International Journal of Advanced Computer Science and Applications, vol. 12, no. 6, 2021.
  • S. Rahman, M. Hasan, and A. K. Sarkar, “Prediction of brain stroke using machine learning algorithms and deep neural network techniques,” European Journal of Electrical Engineering and Computer Science, vol. 7, no. 1, pp. 23–30, 2023.
  • FEDESORIANO, “Stroke prediction dataset,” 2023. Accessed on 2023-08-16.
  • A. Dhillon, A. Singh, and V. K. Bhalla, “A systematic review on biomarker identification for cancer diagnosis and prognosis in multi-omics: from computational needs to machine learning and deep learning,” Archives of Computational Methods in Engineering, vol. 30, no. 2, pp. 917–949, 2023.
  • A. Dhillon, A. Singh, and V. K. Bhalla, “Biomarker identification and cancer survival prediction using random spatial local best cat swarm and bayesian optimized dnn,” Applied Soft Computing, p. 110649, 2023.
  • K. S. Gill, S. Saxena, and A. Sharma, “Ncgtm: A noncooperative game-theoretic model to assist ids in cloud environment,” IEEE Transactions on Industrial Informatics, 2023.
  • A. Kaur and D. Gupta, “A hybrid classification model for prediction of academic performance of students: An edm application,” in International Conference on Emergent Converging Technologies and Biomedical Systems, pp. 59–71, Springer, 2022.
  • H. Kamel, D. Abdulah, and J. M. Al-Tuwaijari, “Cancer classification using gaussian naive bayes algorithm,” in 2019 international engineering conference (IEC), pp. 165–170, IEEE, 2019.
  • G. Sachdeva, P. Singh, and P. Kaur, “Plant leaf disease classification using deep convolutional neural network with bayesian learning,” Materials Today: Proceedings, vol. 45, pp. 5584–5590, 2021.
  • L. Ali, S. U. Khan, N. A. Golilarz, I. Yakubu, I. Qasim, A. Noor, R. Nour, et al., “A feature-driven decision support system for heart failure prediction based on statistical model and gaussian naive bayes,” Computational and Mathematical Methods in Medicine, vol. 2019, 2019.
  • E. Elgeldawi, A. Sayed, A. R. Galal, and A. M. Zaki, “Hyperparameter tuning for machine learning algorithms used for arabic sentiment analysis,” in Informatics, vol. 8, p. 79, MDPI, 2021.
  • D. M. Belete and M. D. Huchaiah, “Grid search in hyperparameter optimization of machine learning models for prediction of hiv/aids test results,” International Journal of Computers and Applications, vol. 44, no. 9, pp. 875–886, 2022.
  • M. A. H. Abas, N. Ismail, N. Ali, S. Tajuddin, and N. M. Tahir, “Agarwood oil quality classification using support vector classifier and grid search cross validation hyperparameter tuning,” Int. J, vol. 8, 2020.
  • H. Alibrahim and S. A. Ludwig, “Hyperparameter optimization: Comparing genetic algorithm against grid search and bayesian optimization,” in 2021 IEEE Congress on Evolutionary Computation (CEC), pp. 1551–1559, IEEE, 2021.
  • R. Valarmathi and T. Sheela, “Heart disease prediction using hyper parameter optimization (hpo) tuning,” Biomedical Signal Processing and Control, vol. 70, p. 103033, 2021.
  • J. Wu, X.-Y. Chen, H. Zhang, L.-D. Xiong, H. Lei, and S.-H. Deng, “Hyperparameter optimization for machine learning models based on bayesian optimization,” Journal of Electronic Science and Technology, vol. 17, no. 1, pp. 26–40, 2019.
  • T. T. Joy, S. Rana, S. Gupta, and S. Venkatesh, “Hyperparameter tuning for big data using bayesian optimisation,” in 2016 23rd International Conference on Pattern Recognition (ICPR), pp. 2574–2579, IEEE, 2016.
  • Bischl, M. Binder, M. Lang, T. Pielok, J. Richter, S. Coors, J. Thomas, T. Ullmann, M. Becker, A.-L. Boulesteix, et al., “Hyperparameter optimization: Foundations, algorithms, best practices, and open challenges,” Wiley Interdisciplinary Reviews: Data Mining and Knowledge Discovery, vol. 13, no. 2, p. e1484, 2023.
Еще
Статья научная