Estimation of the Frocini criteria and omega square criteria statistics by the statistical tests method for a mixture of normal distributions
Автор: Ushanov S. V., Ogurtsov D. A.
Журнал: Siberian Aerospace Journal @vestnik-sibsau-en
Рубрика: Informatics, computer technology and management
Статья в выпуске: 1 vol.20, 2019 года.
Бесплатный доступ
A lot of sets of subjects and objects in biology, industry, management can be divided into a number of classes, each of which corresponds to a certain distribution component. When analyzing a mixture of distributions, it is necessary to estimate its parameters (task 1) and to assess the correspondence of empirical and theoretical distribution functions (task 2). To solve the first problem, numerical algorithms that implement the method of moments and the maximum likelihood method are used. In this paper, the problem of estimating the distribution parameters is solved by minimizing the goodness measure by the Quasi-Newton method. The second problem is solved by comparing the empirical and theoretical distribution functions by one or several statistical goodness measures. Statistics of the distribution of these measures depends on the sample size, the method of forming data and estimating distribution parameters. The paper examines the goodness measure between Frocini and omega-square (Kramer – Mises – Smirnov). The evaluation of the statistics of the goodness measure was carried out by the simulation method based on the results of 50000 statistical tests. In each of the tests, the distribution parameters were estimated by minimizing the calculated value of the corresponding goodness measure. The results of simulation modeling allow estimating the statistics of the parameters of a mixture of distributions. The results of solving the considered problems for a mixture of two normal distributions of size 240 are presented.
Frocini statistics, omega-square statistics, statistical tests, mixture of distributions
Короткий адрес: https://sciup.org/148321657
IDR: 148321657 | DOI: 10.31772/2587-6066-2019-20-1-28-34
Список литературы Estimation of the Frocini criteria and omega square criteria statistics by the statistical tests method for a mixture of normal distributions
- Pavlov I. N., Ushanov S. V. [Study of the distribution of trees by diameter analysis methods for mixtures of distributions]. Vestnik SibGTU. 2005, No. 1, P. 38–46 (In Russ.).
- Ushanova V. M. Kompleksnaia pererabotka drevesnoi zeleni i kory pikhty sibirskoi s polucheniem produktov, obladaiuhshikh biologicheskoi aktivnost’iu. Dokt. Dis. [Complex processing of wood greens and Siberian fir bark to give products having biological activity. Doct. Dis.]. Krasnoiarsk, 2012, 34 p.
- Ushanova V. M., Ushanov S. V. [Study of the process of extraction of fir bark by Siberian liquefied carbon dioxide]. Vestnik Krasgau. 2009, No. 12 (39), P. 39–44 (In Russ.).
- Ushanova V. M., Ushanov S. V. Ekstragirovaniye drevesnoy zeleni i kory pikhty sibirskoy szhizhennym dioksidom ugleroda i vodno-spirtovymi rastvorami [Extraction of wood greens and Siberian fir bark with liquefied carbon dioxide and water-alcohol solutions]. Krasnoyarsk, 2009, 191 p.
- Kobzar A. I. Prikladnaya matematicheskaya statistika. Dlya inzhenerov i nauchnykh rabotnikov [Applied mathematical statistics. For engineers and scientists]. Moscow, Fizmatlit Publ., 2006, 816 p.
- Vetrov P. P., Kropotov D. A., Osokin A. A. [The automatic determination of the number of components in the mixture of normal distributions]. Zhurnal vychislitel'noy matematiki i matematicheskoy fiziki. 2010, Vol. 50, No. 4, P. 770–783 (In Russ.).
- Korolev V. Yu. EM-algoritm, yego modifikatsii i ikh primeneniye k zadache razdeleniya smesey veroyatnostnykh raspredeleniy. Teoreticheskiy obzor [EM-algorithm, its modifications and their application to the problem of separation of probability distributions. Theoretical review]. Moscow, IPI RAN Publ., 2007, 102 p.
- Celeux G., Chauveau D., Diebolt J. On Stochastic Versions of the EM algorithm: An Experimental study in the Mixture Case. Journal of Statis. Comput. Simul. 1996, Vol. 55, P. 287–314.
- Ohorsin B. A. Prikladnaya matematika v sisteme MathCad [Applied Mathematics in the MathCad system]. Moscow, Lan’ Publ., 2008, 352 p.
- Goldstein A. M. Optimizatsiya v srede MatLAB [Optimization in MatLAB]. Perm, 2015, 192 p.
- Lemeshko B. Yu, Lemeshko S. B., Postovalov S. N., Chimitov E. V. Statisticheskiy analiz dannykh, modelirovaniye, issledovaniye veroyatnostnykh zakonomernostey. Komp'yuternyy podkhod [Statistical data analysis, modeling, probabilistic regularities research. Computer approach]. Novosibirsk, NGTU Publ., 2011, 888 p.
- Orlov A. I. [Non-parametric criteria for the agreement of Kolmogorov, Smirnov, omega-square and errors in their application]. Nauchnyy zhurnal KubGAU. 2014, No. 97 (03), P. 1–29 (In Russ.).
- Frozini B. V. A survey of a class of goodness-offit statistics. Metron. 1978, Vol. 36, No. 1–2, Р. 3–49.
- Ogurtsov D. A., Ushanov S. V. [Evaluation of statistics of the criterion of the normality of the Frozini distribution by the method of statistical tests]. Aktual'nyye problemy aviatsii i kosmonavtiki. 2017, Vol. 2, No. 3, P. 290–292 (In Russ.).
- Martynov G. V. Kriterii omega-kvadrat [Criteria omega square]. Moscow, Nauka Publ., 1978, 78 p.
- Ogurtsov D. A., Ushanov S. V. [Evaluation of statistics on the normality of the distribution of the omegasquare method of statistical tests]. Aktual'nyye problemy aviatsii i kosmonavtiki. 2017, Vol. 2, No. 3, P. 293–295 (In Russ.).
- Lemeshko B. Yu. Neparametricheskiye kriterii soglasiya. Rukovodstvo po primeneniyu [Non-parametric compliance criteria. Application Guide]. Moscow, INFRA-M Publ., 2014, 163 p.
- Ushanov S. V., Ogurtsov D. A. [Estimation of statistics of the criterion for the normality of the Frozini distribution using the statistical test method in MATHCAD]. Reshetnevskiye chteniya. 2018, Vol. 2. No. 22, P. 171–173 (In Russ.).
- Zhuk A. Yu. [Hydrodynamic qualities of whip beams made of wood with a limited margin of buoyancy]. Sistemy. Metody. Tekhnologii. 2014, No. 4 (24), P. 160–165 (In Russ.).