Estimation of the possibility of matching the relative motion of nanosatellites under active aerodynamic control
Автор: Lukyanov M.M., Zuev D.M.
Журнал: Siberian Aerospace Journal @vestnik-sibsau-en
Рубрика: Aviation and spacecraft engineering
Статья в выпуске: 3 vol.24, 2023 года.
Бесплатный доступ
The article discusses the prospects of utilization of aerodynamic control to maintain the formation of nanosatellites of the CubeSat class. The purpose of this work is to estimate the limits of the application of active aerodynamic control to stabilize the relative motion of two CubeSat 3U satellites in a sunsynchronous orbit with a height of 570 km. A review of theoretical information about aerodynamic forces acting on artificial Earth satellites is carried out, within the framework of which models of the Earth's upper atmosphere are considered. Aspects of creating a differential drag force for nanosatellites as an active control actuating mechanism are considered. To study the orbital motion of satellites under the action of aerodynamic control using the General Mission Analysis Tool program, a group flight of two spacecraft was simulated taking into account the factors causing orbital disturbances. Based on the results of experiments, the dynamics of the inter-satellite distance was studied, and a conclusion was made about the possibility of using an aerodynamic differential force to achieve a stable relative motion.
CubeSat, formation flight, differential force, aerodynamic drag, GMAT
Короткий адрес: https://sciup.org/148329698
IDR: 148329698 | DOI: 10.31772/2712-8970-2023-24-3-537-549
Список литературы Estimation of the possibility of matching the relative motion of nanosatellites under active aerodynamic control
- CubeSat. Available at: https://www.cubesat.org (accessed 25.1.2023).
- Bandyopadhyay S., Subramanian G., Foust R., Hadaegh F. A Review of Impending Small Satellite Formation Flying Missions. 53rd AIAA Aerospace Sciences Meeting, Kissimmee, 2015, 17 p.
- Hughes S. P. Preliminary Optimal Orbit Design for the Laser Interferometer Space Antenna (LISA). Advances in the Astronautical Sciences, 2002, vol. 111, p. 61–78.
- Chung S., Miller, D., de Weck, O. ARGOS Testbed: Study of Multidisciplinary Challenges of Future Spaceborne Interferometric Arrays. Optical Engineering, 2004, vol. 43, no. 9, p. 2156–2167.
- Bandyopadhyay S., Foust R., Subramanian G., Chung S., Hadaegh F. Review of formation flying and constellation missions using nanosatellites. Journal of Spacecraft and Rockets, 2016, vol. 53 (3), 12 p.
- Morgan D., Chung S., Blackmore L., Acıkmese B., Bayard D., Hadaegh F. Swarm-Keeping Strategies for Spacecraft Under J2 and Atmospheric Drag Perturbations. Journal of Guidance, Control, and Dynamics, 2012, vol. 35, no. 5, p. 1492–1506.
- Panteleimonov I. N. Perspektivnaya metodika upravleniya poletom kosmicheskikh apparatov odnoi orbital'noi gruppirovki s primeneniem mezhsputnikovykh radiolinii [A promising technique for controlling the flight of spacecraft of one orbital grouping using inter-satellite radio lines]. Raketnokosmicheskoe priborostroenie i informatsionnye sistemy. 2018, no. 2, p. 73–83 (In Russ.).
- Horsley M. An investigation into using differential drag for controlling a formation of Cube- Sats. AMOS Technologies Conference, Maui, 2011, 18 p.
- Ivanov D., Kushniruk M. Issledovanie algoritma upravleniya prostranstvennym dvizheniem gruppy sputnikov s pomoshch'yu aerodinamicheskoi sily [Investigation of Control Algorithm Using Aerodynamic Force for Satellite Formation Flying Three-Dimensional Motion]. Preprinty IPM im. M. V. Keldysha. 2017, no. 53, p. 1–32.
- Pod"emnaya sila kryla samoleta: formula [Lifting force of a winged aircraft: formula]. Available at: https://travelsoul.ru/podemnaa-sila-kryla-samoleta-formula/ (accessed 04.10.2023).
- Vaughan W., Johnson D., Justus C. Guide to Reference and Standard Atmosphere Models: Tech. Rep. Reston, American Institute of Aeronautics and Astronautics Publ., 2010, 142 p.
- Jacchia L. New static models of the thermosphere and exosphere with empirical temperature profiles. Special Report. Cambridge, Smithsonian Astrophysical Observatory, 1970, 87 p.
- Hedin A. Extension of the MSIS thermosphere model into the middle and lower atmosphere. Journal of Geophysical Research, 1991, no. 96, p. 1159–1172.
- Picone J., Hedin A., Drob D. NRLMSISE00 empirical model of the atmosphere: Statistical comparisons and scientific issues. Journal of Geophysical Research, 2002, vol, 107, no. A12, 16 p.
- GOST R 25645.166–2004. Atmosfera Zemli verkhnyaya. Model' plotnosti dlya ballisticheskogo obespecheniya poletov iskusstvennykh sputnikov Zemli. [State Standard R 25645.166–2004. Earth upper atmosphere. Density model for ballistic support of flights of artificial earth satellites]. Moscow, IPK Izdatelstvo standartov Publ., 2004. 24 p.
- Harrison S. A free molecular aerodynamic investigation using multiple satellite analysis. Planet. Space Sci., 1996, vol. 44, no. 2, p. 171–180.
- Oltrogge D., Leveque K. An evaluation of cubesat orbit decay. Proceedings of 25th Annual AIAA/USU Conference on Small Satellites, Utah, 2011, 12 p.
- Foster C., Hallam H., Mason J. Orbit Determination and Differential-drag Control of Planet Labs Cubesat Constellations. ArXiv: Space Physics, 2015, 13 p.
- Gangestad J., Rowen D., Hardy B. Flight Results from AeroCube-6: A Radiation Dosimeter Mission in the 0.5U Form Factor. CubeSat Developers' Workshop, San Luis Obispo, 2016, 18 p.
- General Mission Analysis Tool (GMAT) v.R2016a. Available at: https://software.nasa.gov/software/GSC-17177-1 (accessed: 08.2.2023).