Euhalophyte eryngium maritimum L.: the microstructure and functional characteristics

Автор: Ivanova A.P., Tsonev T.D., Peeva V.N., Maslenkova L.T., Najdenski H.M., Tsvetkova I.V., Babenko L.M., Shcherbatiuk M.M., Sheiko O.A., Kosakivska I.V.

Журнал: Журнал стресс-физиологии и биохимии @jspb

Статья в выпуске: 3 т.11, 2015 года.

Бесплатный доступ

The microstructure of the leaf surface, lipids composition, pigments spectrum, biological and photosynthetic activity, and hormones status of euhalophyte Eryngium maritimum L., one of the most salt-tolerant plants, were studied. It was shown that the existence in saline and dry soils is provided among others adaptive mechanisms by specific microstructure of leaf, adaxial and abaxial surfaces of which have well-developed cuticle and stomata slit placed below the surface of the epidermis. The presence of a large amount of saturated fatty acids provides decrease of membrane permeability and better resistance against soil salinity. The key role in photosynthetic activity is played by chlorophyll a. At the same time a high amount of carotenoids (as compared with amount of chlorophylls) points out that these pigments have a light-collecting function and could transfer an additional energy to chlorophylls. The data from thermoluminescence analyses showed a possible inhibition of recombination reactions in PS II by the assumed saline concentration in plant tissue. Besides, the fluorescence measurements indicate reduced efficiency of photosynthetic reactions. The high level of active ABA is correlated with salt tolerance and ability to survive and grow in stress conditions. The high level of conjugated form of IAA demonstrated that activity of this hormone is limited.

Еще

Eryngium maritimum l, lipids, microstructure, phytohormones, pigments

Короткий адрес: https://sciup.org/14323927

IDR: 14323927

Список литературы Euhalophyte eryngium maritimum L.: the microstructure and functional characteristics

  • Babenko L.M., I.V. Kosakivska., Yu.A. Akimov, D.O. Klymchuk, T.D. Skaternya. (2014) Effect of temperature stresses on pigment сontent, lipoxygenase activity and cell ultrastructure of winter wheat seedlings. Genetics and Plant Physiology, 4 (1-2), 117-125
  • Blight E.G., Dyer W.J. (1959) A rapid method of total lipid extraction and purification. Cаn. J. Biochem. Physiol., 37, 911-917
  • Christie W.W., Han X. (2010) Lipid Analysis Isolation, Separation, Identification and Lipidomic Analysis. Oily Press, Elsevier, P. 448
  • Darriet F., Andreani S., De Cian Marie-Cécile, Costa J., Muselli A. (2014) Chemical variability and antioxidant activity of Eryngium maritimum L. essential oils from Corsica and Sardinia. Flavour and Fragrance Journal. 29, 3-13
  • Del Pozo J.C., Lopez Mataz M.A., Ramirez-Parra E., Gutierrez C. (2005) Hormonal Control of the Plant Cell Cycle. Physiol. Plant., 123, 173-183
  • Hormaetxe K., Becerril J.M., Fleck I., Pintó M., García-Plazaola J.I. (2005) Functional role of red (retro)-carotenoids as passive light filters in the leaves of Buxus sempervirens L.: increased protection of photosynthetic tissues? J. Exp. Bot., 56,.2629-2636
  • Ivanova A., Nechev J., Stefanov K. (2000) Lipid composition of some halophyte plants from the Black Sea coast of Bulgaria Compt. rend. Acad. Bulg. Sci., 53, 83-86
  • Ivanova A., Khozin-Goldberg I., Kamenarska Z., Nechev J., Cohen Z., Popov S., Stefanov K. (2003) Lipophylic Compounds from Euphorbia peplis L. - a Halophytic Plant from the Bulgarian Black Sea Coast. Z. Naturforsch., 58, 783-788
  • Kosakivska I.V., Voytenko L.V., Likhnyovskiy R.V., Ustinova A.Y. Effect of temperature on accumulation of abscisic acid and indole-3-acetic acid in Triticum aestivum L. seedlings. Genetics and Plant Physiology, 4 (3-4), 2014, 117-125
  • Minasiewicz J., Borzyszkowska S., Żółkoś K., Bloch-Orłowska J., Afranowicz R. (2011) Population genetic structure of the rare species Eryngium maritimum L. (Apiaceae) in the Gulf of Gdansk: implications for conservation and management Biodiv. Res. Conserv., 24, 39-48
  • Meot-Duros L., Le Flochb G., Magné C. (2008). Radical scavenging, antioxidant and antimicrobial activities of halophytic species J. of Ethnopharmacology, 116, 258-262
  • Rudall P. J. (2007) Anatomy of flowering plants, Camb. Univ. Press. Cambridge, P. 159
  • Spooner F., Sykes G. (1972) Laboratory assessment of antibacterial activity. In J.R. Norris and D. Ribbons (Eds.), Methods in microbiology, London, New York: Academic press, 7B, 216-217
  • Wellburn A. J. (1994) The spectral determination of chlorophylls a and b, as well as total carotenoids, using various solvents with spectrophotometers of different resolution. J. Plant Physiol., 144, 307-313
  • Wilkinson S., Davies W.J. (2002) ABA-Based Chemical Signalling: The Coordination of Responses to Stress in Plants. Plant Cell Environ., 25 (1), 195-210
  • Zeinalov Y., Maslenkova L. (1996). A computerized equipment for thermoluminescence investigations. Bulg. J. Plant Physiol., 22, 88-94
  • Zheng-Yi Xu, Yun-Joo Y., Inhwan H. (2014) ABA conjugated and their physiological roles in plant cells. In: Abscisic acid: Metabolism, Transport and Signaling. Springer, Dordrecht. P. 77-87
Еще
Статья научная