Existence of global fundamental solution to a class of Fokker-Planck equations

Бесплатный доступ

ID: 143164294 Короткий адрес: https://sciup.org/143164294

Список литературы Existence of global fundamental solution to a class of Fokker-Planck equations

  • A. Mashtakov, V. Yumaguzhin, V. Yumaguzhina. "On Solutions To Fokker-Planck Equations", Journal of Mathematical Sciences, 2017 (to appear).
  • G. Citti, A. Sarti. "A cortical based model of perceptual completion in the roto-translation space", Journal of Mathematical Imaging and Vision, V. 24. No. 3. 2006. P. 307-326.
  • J. Petitot. "The neurogeometry of pinwheels as a sub-Riemannian contact structure", Journal Physiology Paris, V. 97. No. 2-3. 2003. P. 265-309.
  • A. P. Mashtakov, A. A. Ardentov, Yu. L. Sachkov. "Parallel algorithm and software for image inpainting via sub-Riemannian minimizers on the group of rototranslations", Numerical Mathematics: Theory, Methods and Applications, V. 6. No. 1. 2013. P. 95-115.
  • G. Sanguinetti, G. Citti, A. Sarti. "A model of natural image edge co-occurrence in the rototranslation group", Journal of Vision, V. 10. No. 14. 2010. P. 37.
  • D. Barbieri, G. Citti, G. Sanguinetti, A. Sarti. "An uncertainty principle underlying the functional architecture of V1", Journal of Physiology Paris, V. 106. No. 5-6. 2012. P. 183-193. Исследование А.П. Маштакова выполнено за счет гранта Российского научного фонда (проект № 17-11-01387) DOI: 10.25209/2079-3316-2017-8-4-149-162
  • S. Baigi, A. Bonfiglioli. The existence of a global fundamental solution for homogeneous Hörmander operators via a global lifting method, 2016, arXiv: 1604.02599.
  • G. B. Folland. "On the Rothschild-Stein lifting theorem", Comm. Partial Differential Equations, V. 2. No. 2. 1977. P. 161-207.
  • F. Treves. Topological Vector Spaces, Distributions and Kernels, Academic Press, New York-London, 1967.
  • G. B. Folland. "Subelliptic estimates and function spaces on nilpotent Lie groups", Ark. Mat., V. 13. No. 1-2. 1975. P. 161-207.
Еще
Ред. заметка