Experimental investigation on performances of plate heat exchanger's cold side for lubrication/water - water heat transfer
Автор: Wang Wei, Makeev Andrei, Povorov Sergei
Журнал: Бюллетень науки и практики @bulletennauki
Рубрика: Технические науки
Статья в выпуске: 6 т.4, 2018 года.
Бесплатный доступ
In this research, the thermal-hydraulic performance of plate heat exchanger (Ridan HHN no. 04) used in domestic water system is investigated experimentally. The hot lubrication/water inlet keep temperature and flow rate constant at 72 °C and 0.8-0.1 L/s, the cold-water inlet remained 12 °C with different velocity. Then the convective heat transfer coefficient increases with enhancement of Reynolds number. Moreover, it is observed that Fanning friction factor decreases with an increase of the Reynolds number and it is showed by the figure. Therefore, it is possible to find that the increase of the Peclet number results in an increase of the Nusselt number as well when Peclet number in water - water smalls than 2500. Finally, we get heat exchanging performances of cold side in lubrication/water - water using plate heat exchanger.
Plate heat exchanger, thermal-hydraulic, convective heat transfer coefficient, peclet number
Короткий адрес: https://sciup.org/14112094
IDR: 14112094 | DOI: 10.5281/zenodo.1289833
Список литературы Experimental investigation on performances of plate heat exchanger's cold side for lubrication/water - water heat transfer
- Zaleski, T., & Klepacka, K. (1992). Plate heat exchangers-method of calculation, charts and guidelines for selecting plate heat exchanger configurations. Chemical Engineering and Processing: Process Intensification, 31(1), 49-56.
- Rohsenow, W. M., & Cho, Y. I. (1998). Handbook of heat transfer (Vol. 3). J. P. Hartnett (Ed.). New York, McGraw-Hill.
- Bennett, C. O., & Myers, J. E. (1982). Momentum, heat, and mass transfer. 3rd ed. New York, McGraw-Hill, McGraw-Hill chemical engineering series, 832.
- Bergles, A. E. (1973). Techniques to augment heat transfer. Handbook of heat transfer. (A 74-17085 05-33) New York, McGraw-Hill Book Co., 1973, 10-1.
- Bergies, E. A. (1999). The imperative to enhance heat transfer. Heat Transfer Enhancement of Heat Exchangers. Dordrecht, Springer, 13-29.
- Dewan, A., Mahanta, P., Raju, K. S., & Kumar, P. S. (2004). Review of passive heat transfer augmentation techniques. Proceedings of the Institution of Mechanical Engineers, Part A: Journal of Power and Energy, 218(7), 509-527.
- Baehr H. D., Stephan K. Wärme -und Stoffübertragung. Aktualisierte Auflage. Berlin, Heidelberg, Springer Verlag, 2013, XXIV, 804.
- Mishra, M., Das, P. K., & Sarangi, S. (2009). Second law based optimization of crossflow plate-fin heat exchanger design using genetic algorithm. Applied Thermal Engineering, 29(14-15), 2983-2989.
- Cheng, X. (2013). Entropy resistance minimization: An alternative method for heat exchanger analyses. Energy, 58, 672-678 DOI: 10.1016/j.energy.2013.05.024
- Fakheri, A. (2007). Heat exchanger efficiency. Journal of Heat Transfer, 129(9), 1268-1276.
- Zheng, J. X., Jin, G. P., Chyu, M. C., & Ayub, Z. H. (2006). Boiling of ammonia/lubricant mixture on a horizontal tube in a flooded evaporator with inlet vapor quality. Experimental thermal and fluid science, 30(3), 223-231.
- Khan, M. S., Khan, T. S., Chyu, M. C., & Ayub, Z. H. (2012). Experimental investigation of evaporation heat transfer and pressure drop of ammonia in a 30 chevron plate heat exchanger. International Journal of refrigeration, 35(6), 1757-1765.
- Zhang, J. F., Guo, S. L., Li, Z. Z., Wang, J. P., He, Y. L., & Tao, W. Q. (2013). Experimental performance comparison of shell-and-tube oil coolers with overlapped helical baffles and segmental baffles. Applied Thermal Engineering, 58(1-2), 336-343.
- Focke, W. W., Zachariades, J., & Olivier, I. (1985). The effect of the corrugation inclination angle on the thermohydraulic performance of plate heat exchangers. International Journal of Heat and Mass Transfer, 28(8), 1469-1479.
- Shah, R. K., & Focke, W. W. (1988). Plate heat exchangers and their design theory. Heat Transfer Equipment Design, 227, 254.