Experimental research on heat dissipation at the hot end of semiconductor refrigeration chips

Автор: Cai Feng, Levtsev Aleksei, Lu Lin, Chen Pengzhou

Журнал: Бюллетень науки и практики @bulletennauki

Рубрика: Технические науки

Статья в выпуске: 6 т.9, 2023 года.

Бесплатный доступ

TEC1-12705 and TEC1-12706 two types of semiconductor refrigeration chips were designed with different hot-end heat dissipation conditions. At the same time, a test device for heat dissipation of heat pipes for heat sinks with separate current input and two-stage refrigeration was designed, and the influence of hot-end heat dissipation conditions on cold-end temperature was analyzed. The test results show that the cold terminal temperature of the semiconductor refrigeration sheet is related to the heat dissipation capacity of the hot terminal. Under the condition of limited heat dissipation capacity, the cold terminal temperature decreases first and then increases with the increase of the input current; and under the condition of ensuring the heat dissipation capacity, the cold terminal temperature decreases with the increase of the input current and decreases with the decrease of the hot terminal temperature. The two-piece TEC1-12706 semiconductor refrigeration sheet adopts two-stage refrigeration with separate current input, and the minimum temperature of the cold terminal can reach -36,8°С. The test results show that improving the heat dissipation conditions of the hot end can improve the performance of a single semiconductor refrigeration sheet. At the same time, under the best heat dissipation conditions, the use of separate current input two-stage refrigeration can greatly reduce the temperature of the cold end, which is of great significance to improve the working temperature difference of the semiconductor refrigeration sheet.

Еще

Semiconductor refrigeration, thermoelectric cooler, heat dissipation, two-stage refrigeration

Короткий адрес: https://sciup.org/14128002

IDR: 14128002   |   DOI: 10.33619/2414-2948/91/52

Список литературы Experimental research on heat dissipation at the hot end of semiconductor refrigeration chips

  • Xie, L., & Tang, G. F. (2008). The development and application of semiconductor refrigeration technology. Contamination Control & Air-Conditioning Technology, 1, 68-71.
  • Meng, J. H., Wang, X. D., & Zhang, X. X. (2013). Transient modeling and dynamic characteristics of thermoelectric cooler. Applied energy, 108, 340-348. https://doi.org/10.1016/j.apenergy.2013.03.051
  • Sun, Z., Huang, X., & Liu, J. (2014). Design of Split Evaporative Air Conditioner of Evaporative Cooling and Semiconductor Refrigeration. In Proceedings of the 8th International Symposium on Heating, Ventilation and Air Conditioning: Volume 2: HVAC&R Component and Energy System (pp. 589-599). Springer Berlin Heidelberg. https://doi.org/10.1007/978-3-642-39581-9_58
  • Ohara, B., Sitar, R., Soares, J., Novisoff, P., Nunez-Perez, A., & Lee, H. (2015). Optimization strategies for a portable thermoelectric vaccine refrigeration system in developing communities. Journal of Electronic Materials, 44, 1614-1626. https://doi.org/10.1007/s11664-014- 3491-9
  • Su, Y., Lu, J., & Huang, B. (2018). Free-standing planar thin-film thermoelectric microrefrigerators and the effects of thermal and electrical contact resistances. International Journal of Heat and Mass Transfer, 117, 436-446. https://doi.org/10.1016/j.ijheatmasstransfer.2017.10.023
  • Huang, Z., & Zhang, H. (2017). Reviews of semiconductor refrigeration technology. Non- Ferrous Metal Mater. Eng, 2, 106-111.
  • Zaferani, S. H., Sams, M. W., Ghomashchi, R., & Chen, Z. G. (2021). Thermoelectric coolers as thermal management systems for medical applications: Design, optimization, and advancement. Nano energy, 90, 106572. https://doi.org/10.1016/j.nanoen.2021.106572
  • Gao, Y. W., Shi, C. L., & Wang, X. D. (2019). Numerical analysis for transient supercooling effect of pulse current shapes on a two-stage thermoelectric cooler. Applied Thermal Engineering, 163, 114416. https://doi.org/10.1016/j.applthermaleng.2019.114416
  • Zhou, X. F., Miao, X. P., Yang, J., & Jiang, F. (2015). Experimental Study on Effect of Meteorologic Parameters on Evaporative Cooling System Performance. In Advanced MaterialsResearch (Vol. 1070, pp. 1998-2001). Trans Tech Publications Ltd. https://doi.org/10.4028/www.scientific.net/AMR.1070-1072.1998
  • Pang, Y. F. (2016, August). The theoretical analysis and experimental research on the optimal condition of semiconductor refrigeration. In IOP Conference Series: Earth and Environmental Science (Vol. 40, No. 1, p. 012013). IOP Publishing. https://doi.org/10.1088/1755-1315/40/1/012013
  • Zhang, B., & Wang, Y. (2014). An experimental investigation on a novel liquid thermoelectric cooling device. CIESC Journal, 65(9), 3441-3446.
  • Xu, Y., Tan, G., Guo, X., & Ping, X. (2017). Energy Consumption of Passenger Compartment Auxiliary Cooling System Based on Peltier Effect (No. 2017-01-0155). SAE Technical Paper. https://doi.org/10.4271/2017-01-0155
  • Astrain, D. E., Vián, J. G., & Domınguez, M. (2003). Increase of COP in the thermoelectric refrigeration by the optimization of heat dissipation. Applied Thermal Engineering, 23(17), 2183-2200. https://doi.org/10.1016/S1359-4311(03)00202-3
  • Yan, Q., & Kanatzidis, M. G. (2022). High-performance thermoelectrics and challenges for practical devices. Nature materials, 21(5), 503-513. https://doi.org/10.1038/s41563-021-01109-w
Еще
Статья научная