Experimental study on a pulsation-enhanced heat transfer device

Автор: Liu Zuncheng, Levtsev Aleksei, Zhou Yingzhen

Журнал: Бюллетень науки и практики @bulletennauki

Рубрика: Технические науки

Статья в выпуске: 4 т.6, 2020 года.

Бесплатный доступ

The pulsation-enhanced heat transfer technology is introduced, and a volume coil heat exchanger is designed. A pulsation valve is installed at the heat exchanger outlet of the heat exchanger to pulsate the heat medium, and the same heat exchanger is subjected to pulsation and non-pulsation heat transfer tests. Based on the experiments, combined with the theory of pulsation-enhanced heat transfer technology, heat transfer capacity, heat flow, and convective heat transfer coefficient coefficients, the effective temperature difference, heat flow, and convective heat transfer coefficient of the heat exchanger at different pulse frequencies are analyzed. The relationship between the pulsation frequency of the heat transfer effect of the heat exchanger is obtained. The test results show that the heat exchanger has higher heat exchange efficiency when there is pulsation under the test conditions.

Еще

Pulsating generator, pulsating flow, frequency, heat transfer

Короткий адрес: https://sciup.org/14116211

IDR: 14116211   |   DOI: 10.33619/2414-2948/53/28

Список литературы Experimental study on a pulsation-enhanced heat transfer device

  • Wang W., Zhang L., Yan Y. Study on turbulence features near an oscillating curved wall // Journal of Hydrodynamics. 2007. V. 19. №3. P. 255-263. DOI: 10.1016/S1001-6058(07)60057-2
  • Xu Q., Shen R. Fluid-structure interaction of hydrodynamic damper during the rush into the water channel // Journal of Hydrodynamics, Ser. B. 2008. V. 20. №5. P. 583-590. DOI: 10.1016/S1001-6058(08)60098-0
  • Yang Q., Wang J., Wang L. Interaction of wind with fabric structures // Spatial Structures. 2003. V. 1. (in Chinese).
  • Yang Q., Liu R. On aerodynamic stability of membrane structures // Engineering Mechanics. 2006. V. 9. (in Chinese).
  • Yang Q., Wu Y., Zhu W. Experimental study on the static interaction between membrane structures and air // China Civil Engineering Journal. 2008. V. 41. №5. P. 19-25. (in Chinese).
  • Shen S., Wu Y. Research progress on fluid-solid interaction effect of wind-induced vibration respond of membrane structure // Journal of Architecture and civil engineering (Chinese). 2006. V. 23. P. 1-9. (in Chinese).
  • Ortega-Casanova J., Molina-Gonzalez F. Axisymmetric numerical investigation of the heat transfer enhancement from a heated plate to an impinging turbulent axial jet via small vortex generators // International Journal of Heat and Mass Transfer. 2017. V. 106. P. 183-194.
  • DOI: 10.1016/j.ijheatmasstransfer.2016.10.064
  • Staats W. L., Brisson J. G. Active heat transfer enhancement in air cooled heat sinks using integrated centrifugal fans // International Journal of Heat and Mass Transfer. 2015. V. 82. P. 189-205.
  • DOI: 10.1016/j.ijheatmasstransfer.2014.10.075
  • Yan K. et al. Thermal-deformation coupling in thermal network for transient analysis of spindle-bearing system // International Journal of Thermal Sciences. 2016. V. 104. P. 1-12.
  • DOI: 10.1016/j.ijthermalsci.2015.12.007
  • Mahmoudi Y., Karimi N. Numerical investigation of heat transfer enhancement in a pipe partially filled with a porous material under local thermal non-equilibrium condition // International Journal of Heat and Mass Transfer. 2014. V. 68. P. 161-173.
  • DOI: 10.1016/j.ijheatmasstransfer.2013.09.020
  • Defraeye T., Blocken B., Carmeliet J. CFD analysis of convective heat transfer at the surfaces of a cube immersed in a turbulent boundary layer // International Journal of Heat and Mass Transfer. 2010. V. 53. №1-3. P. 297-308.
  • DOI: 10.1016/j.ijheatmasstransfer.2009.09.029
  • Chang S. W., Chiang K. F., Kao J. K. Heat transfer in rotating spiral channel with two opposite planar walls roughened by skew ribs // International journal of thermal sciences. 2012. V. 56. P. 107-121.
  • DOI: 10.1016/j.ijthermalsci.2012.01.018
  • Guo C. et al. Effect of mechanical vibration on flow and heat transfer characteristics in rectangular microgrooves // Applied thermal engineering. 2013. V. 52. №2. P. 385-393.
  • DOI: 10.1016/j.applthermaleng.2012.12.010
  • Richardson E. G., Tyler E. The transverse velocity gradient near the mouths of pipes in which an alternating or continuous flow of air is established // Proceedings of the Physical Society. 1929. V. 42. №1. P. 1.
  • DOI: 10.1088/0959-5309/42/1/302
  • Uchida S. The pulsating viscous flow superposed on the steady laminar motion of incompressible fluid in a circular pipe // Zeitschrift für angewandte Mathematik und Physik ZAMP. 1956. V. 7. №5. P. 403-422.
  • DOI: 10.1007/BF01606327
  • Havemann H. A., Rao N. N. N. Heat transfer in pulsating flow // Nature. 1954. V. 174. №4418. P. 41-41.
  • Bergles A. E. Some perspectives on enhanced heat transfer-second-generation heat transfer technology. 1988.
  • DOI: 10.1115/1.3250612
  • Wang X., Zhang N. Numerical analysis of heat transfer in pulsating turbulent flow in a pipe // International Journal of Heat and Mass Transfer. 2005. V. 48. №19-20. P. 3957-3970.
  • DOI: 10.1016/j.ijheatmasstransfer.2005.04.011
  • Elshafei E. A. M. et al. Experimental study of heat transfer in pulsating turbulent flow in a pipe // International Journal of Heat and Fluid Flow. 2008. V. 29. №4. P. 1029-1038.
  • DOI: 10.1016/j.ijheatfluidflow.2008.03.018
Еще
Статья научная