Experimental study on heat transfer and pressure drop in plate heat exchanger using water-water

Автор: Wang Wei, Povorov Sergei

Журнал: Бюллетень науки и практики @bulletennauki

Рубрика: Технические науки

Статья в выпуске: 10 т.4, 2018 года.

Бесплатный доступ

It would be misguiding to consider only cost in design of a heat exchanger because high maintenance costs increase total cost during heat exchanger’s services life. Therefore, exergy analysis and energy saving are very important parameters in heat exchanger design. In this study, the effects of pate heat exchanger (PHE, Ridan HHN no. 04) on heat transfer, friction factor and exergy loss were investigated experimentally. Experiments were conducted from laminar flow condition to turbulence flow condition under counter flow condition. Reynolds number and Prandtl number were in the range of 220

Plate heat exchanger, heat transfer, convective heat transfer coefficient, exergy loss

Короткий адрес: https://sciup.org/14114795

IDR: 14114795   |   DOI: 10.5281/zenodo.1461975

Список литературы Experimental study on heat transfer and pressure drop in plate heat exchanger using water-water

  • Shah R. K., Sekulic D. P. Fundamentals of heat exchanger design. John Wiley & Sons, 2003.
  • Kays W. M., London A. L. Compact heat exchangers. 1984.
  • Hajabdollahi F., Hajabdollahi Z., Hajabdollahi H. Optimum design of gasket plate heat exchanger using multimodal genetic algorithm // Heat Transfer Research. 2013. V. 44. №8. P. 1-19.
  • Hajabdollahi H., Naderi M., Adimi S. A comparative study on the shell and tube and gasket-plate heat exchangers: The economic viewpoint // Applied Thermal Engineering. 2016. V. 92. P. 271-282.
  • Najafi H., Najafi B. Multi-objective optimization of a plate and frame heat exchanger via genetic algorithm // Heat and Mass Transfer. 2010. V. 46. №6. P. 639-647.
  • Lee J., Lee K. S. Friction and Colburn factor correlations and shape optimization of chevron-type plate heat exchangers //Applied Thermal Engineering. 2015. V. 89. P. 62-69.
  • Arsenyeva O. P. et al. Optimal design of plate-and-frame heat exchangers for efficient heat recovery in process industries // Energy. 2011. V. 36. №8. P. 4588-4598.
  • Gut J. A. W., Pinto J. M. Optimal configuration design for plate heat exchangers // International Journal of Heat and Mass Transfer. 2004. V. 47. №22. P. 4833-4848.
  • Gut J. A. W., Pinto J. M. Modeling of plate heat exchangers with generalized configurations // International Journal of Heat and Mass Transfer. 2003. V. 46. №14. P. 2571-2585.
  • Wang L., Sunden B. Optimal design of plate heat exchangers with and without pressure drop specifications // Applied Thermal Engineering. 2003. V. 23. №3. P. 295-311.
  • Durmuş A. et al. Investigation of heat transfer and pressure drop in plate heat exchangers having different surface profiles // International journal of heat and mass transfer. 2009. V. 52. №5-6. P. 1451-1457.
  • Zhu J., Zhang W. Optimization design of plate heat exchangers (PHE) for geothermal district heating systems // Geothermics. 2004. V. 33. №3. P. 337-347.
  • Mishra M., Das P. K., Sarangi S. Second law based optimisation of crossflow plate-fin heat exchanger design using genetic algorithm // Applied Thermal Engineering. 2009. V. 29. №14-15. P. 2983-2989.
  • Cheng X. T. Entropy resistance minimization: An alternative method for heat exchanger analyses // Energy. 2013. V. 58. P. 672-678.
  • Fakheri A. Heat exchanger efficiency // Journal of Heat Transfer. 2007. V. 129. №9. P. 1268-1276.
  • Fakheri A. Efficiency analysis of heat exchangers and heat exchanger networks // International Journal of Heat and Mass Transfer. 2014. V. 76. P. 99-104.
  • Patel V. K., Rao R. V. Design optimization of shell-and-tube heat exchanger using particle swarm optimization technique // Applied Thermal Engineering. 2010. V. 30. №11-12. P. 1417-1425.
  • Rao R. V., Patel V. Design optimization of shell and tube heat exchangers using swarm optimization algorithms // Proceedings of the Institution of Mechanical Engineers. Part A: Journal of Power and Energy. 2011. V. 225. №5. P. 619-634.
  • Tovazhnyansky L. L. et al. The simulation of multicomponent mixtures condensation in plate condensers // Heat transfer engineering. 2004. V. 25. №5. P. 16-22.
  • Rao R. V., Patel V. Multi-objective optimization of heat exchangers using a modified teaching-learning-based optimization algorithm // Applied Mathematical Modelling. 2013. V. 37. №3. P. 1147-1162.
  • Rao R. V., Patel V. K. Thermodynamic optimization of cross flow plate-fin heat exchanger using a particle swarm optimization algorithm // International Journal of Thermal Sciences. 2010. V. 49. №9. P. 1712-1721.
  • Rao R. V., Patel V. Design optimization of rotary regenerator using artificial bee colony algorithm // Proceedings of the Institution of Mechanical Engineers. Part A: Journal of Power and Energy. 2011. V. 225. №8. P. 1088-1098.
  • Patel V., Savsani V. Optimization of a plate-fin heat exchanger design through an improved multi-objective teaching-learning based optimization (MO-ITLBO) algorithm // Chemical Engineering Research and Design. 2014. V. 92. №11. P. 2371-2382.
  • Nobile E., Pinto F., Rizzetto G. Geometric parameterization and multiobjective shape optimization of convective periodic channels // Numerical Heat Transfer, Part B: Fundamentals. 2006. V. 50. №5. P. 425-453.
  • Nobile E., Pinto F., Rizzetto G. Multi-Objective Shape Optimization of Convective Wavy Channels // ASME 2005 Summer Heat Transfer Conference collocated with the ASME 2005 Pacific Rim Technical Conference and Exhibition on Integration and Packaging of MEMS, NEMS, and Electronic Systems. American Society of Mechanical Engineers, 2005. P. 829-838.
  • Tiwari A. K. et al. Numerical investigation of heat transfer and fluid flow in plate heat exchanger using nanofluids // International Journal of Thermal Sciences. 2014. V. 85. P. 93-103.
  • Manzan M. et al. Multi-objective optimization for problems involving convective heat transfer // Optimization and computational fluid dynamics. Berlin - Heidelberg: Springer, 2008. P. 217-266.
  • Ničeno B., Nobile E. Numerical analysis of fluid flow and heat transfer in periodic wavy channels // International Journal of Heat and Fluid Flow. 2001. V. 22. №2. P. 156-167.
  • Ranut P. et al. Multi-objective shape optimization of a tube bundle in cross-flow // International Journal of Heat and Mass Transfer. 2014. V. 68. P. 585-598.
  • Valueva E. P., Purdin M. S. An investigation of heat transfer for a pulsating laminar flow in rectangular channels with a boundary condition of the second kind // High Temperature. 2018. V. 56. №1. P. 149-152.
  • Focke W. W., Zachariades J., Olivier I. The effect of the corrugation inclination angle on the thermohydraulic performance of plate heat exchangers // International Journal of Heat and Mass Transfer. 1985. V. 28. №8. P. 1469-1479.
  • Shah R. K., Focke W. W. Plate heat exchangers and their design theory // Heat transfer equipment design. 1988. V. 227. P. 254.
Еще
Статья научная