Experimental study on heat transfer of pulsating flow enhanced the plate heat exchanger

Автор: Qian Hao, Kudashev Sergei, Plotnikov Viktor

Журнал: Бюллетень науки и практики @bulletennauki

Рубрика: Технические науки

Статья в выпуске: 8 т.5, 2019 года.

Бесплатный доступ

We conducted two sets of experiments, one is under steady-state conditions and the other under pulsating conditions. We focused on measuring the heat transfer characteristics of plate heat exchangers under different pulsation conditions. In the experiment, we control the mass flow of the hot fluid to circulate at a rate of 0.722 kg/s. The mass flow rate of the cold fluid is 0.05-0.18 kg/s, and the pulsation frequency is 0.45-2.23 Hz. We measured different mass flows at different pulsation frequency. The data analysis shows that when the pulsation frequency is 1.78 Hz, the heat transfer coefficient reaches a maximum of 4415.73 w/(m2·k), and the corresponding cold fluid mass flow rate is 0.155 kg/s, and compared with the heat transfer characteristics of the plate heat exchanger under steady flow, it is found that the average increase in the heat transfer coefficient during the transition to the pulsating mode was 20%.

Еще

Plate heat exchanger, pulsating flow, heat transfer coefficient, nusselt number, reynolds number, enhancement factor

Короткий адрес: https://sciup.org/14115658

IDR: 14115658   |   DOI: 10.33619/2414-2948/45/09

Список литературы Experimental study on heat transfer of pulsating flow enhanced the plate heat exchanger

  • Rahgoshay M., Ranjbar A. A., Ramiar A. Laminar pulsating flow of nanofluids in a circular tube with isothermal wall//International Communications in Heat and Mass Transfer. 2012. V. 39. №3. P. 463-469. DOI: 10.1016/j.icheatmasstransfer.2011.12.008
  • Davletshin I. A. et al. Convective heat transfer in the channel entrance with a square leading edge under forced flow pulsations//International Journal of Heat and Mass Transfer. 2019. V. 129. P. 74-85. DOI: 10.1016/j.ijheatmasstransfer.2018.09.066
  • Jafari M., Farhadi M., Sedighi K. Pulsating flow effects on convection heat transfer in a corrugated channel: A LBM approach//International Communications in Heat and Mass Transfer. 2013. V. 45. P. 146-154. DOI: 10.1016/j.icheatmasstransfer.2013.04.006
  • Zohir A. E. The influence of pulsation on heat transfer in a heat exchanger for parallel and counter water flows//New York Science Journal. 2011. V. 4. №6. P. 61-71. http://www.sciencepub.net/newyork
  • Wantha C. Effect and heat transfer correlations of finned tube heat exchanger under unsteady pulsating flows//International Journal of Heat and Mass Transfer. 2016. V. 99. P. 141-148. DOI: 10.1016/j.ijheatmasstransfer.2016.03.102
  • Zohir A. E., Aziz A. A. A., Habib M. A. Heat transfer characteristics and pressure drop of the concentric tube equipped with coiled wires for pulsating turbulent flow//Experimental Thermal and Fluid Science. 2015. V. 65. P. 41-51.
  • DOI: 10.1016/j.expthermflusci.2015.03.003
  • Witte A., Polifke W. Dynamics of unsteady heat transfer in pulsating flow across a cylinder//International Journal of Heat and Mass Transfer. 2017. V. 109. P. 1111-1131.
  • DOI: 10.1016/j.ijheatmasstransfer.2017.02.072
  • Li G. et al. Experimental study of the heat transfer enhancement from a circular cylinder in laminar pulsating cross-flows//Heat Transfer Engineering. 2016. V. 37. №6. P. 535-544.
  • DOI: 10.1080/01457632.2015.1060758
  • Mikheev N. I. et al. Hydrodynamics and heat transfer of pulsating flow around a cylinder//International Journal of Heat and Mass Transfer. 2017. V. 109. P. 254-265.
  • DOI: 10.1016/j.ijheatmasstransfer.2017.01.125
  • Selimefendigil F., Oztop H. F. Control of laminar pulsating flow and heat transfer in backward-facing step by using a square obstacle//Journal of Heat Transfer. 2014. V. 136. №8. P. 081701.
  • DOI: 10.1115/1.4027344
  • Nandi T. K., Chattopadhyay H. Numerical investigations of developing flow and heat transfer in raccoon type microchannels under inlet pulsation//International Communications in Heat and Mass Transfer. 2014. V. 56. P. 37-41.
  • DOI: 10.1016/j.icheatmasstransfer.2014.04.017
  • Shuai X., Cheng S., Antonini G. Amelioration du transfert convectif de chaleur par l'écoulement pulse dans un fluide visqueux//The Canadian Journal of Chemical Engineering. 1994. V. 72. №3. P. 468-475.
  • DOI: 10.1002/cjce.5450720312
  • West F. B., Taylor A. T. The effect of pulsations on heat transfer-turbulent flow of water inside tubes//Chemical Engineering Progress. 1952. V. 48. №1. P. 39-43.
  • Darling G. B. Heat transfer to liquids in intermittent flow//Petroleum. 1959. V. 22. P. 177.
  • Zhang H. et al. Numerical study on the pulsating effect on heat transfer performance of pseudo-plastic fluid flow in a manifold microchannel heat sink//Applied Thermal Engineering. 2018. V. 129. P. 1092-1105.
  • DOI: 10.1016/j.applthermaleng.2017.10.124
  • Mehta B., Khandekar S. Local experimental heat transfer of single-phase pulsating laminar flow in a square mini-channel//International Journal of Thermal Sciences. 2015. V. 91. P. 157-166.
  • DOI: 10.1016/j.ijthermalsci.2015.01.008
  • Chattopadhyay H., Durst F., Ray S. Analysis of heat transfer in simultaneously developing pulsating laminar flow in a pipe with constant wall temperature//International communications in heat and mass transfer. 2006. V. 33. №4. P. 475-481.
  • DOI: 10.1016/j.icheatmasstransfer.2005.12.008
  • Zhuang N., Tan S., Yuan H. The friction characteristics of low-frequency transitional pulsatile flows in narrow channel//Experimental Thermal and Fluid Science. 2016. V. 76. P. 352-364.
  • DOI: 10.1016/j.expthermflusci.2016.03.030
  • Imran M., Pambudi N. A., Farooq M. Thermal and hydraulic optimization of plate heat exchanger using multi objective genetic algorithm//Case studies in thermal engineering. 2017. V. 10. P. 570-578.
  • DOI: 10.1016/j.csite.2017.10.003
Еще
Статья научная