Exploring high temperature responsive novel non coding RNAS and functional annotations from niger (Guizotia abyssinica)

Автор: Shafia Hoor F., Nagesh Babu R.

Журнал: Журнал стресс-физиологии и биохимии @jspb

Статья в выпуске: 3 т.20, 2024 года.

Бесплатный доступ

Introduction: MicroRNAs (miRNAs) are small non-coding RNAs which regulate gene expression by cleavage or repression of target genes at post-transcriptional level by translational inhibition/ mRNA degradation. Niger (Guizotia abyssinica) is an important oilseed crop widely grown in India. Identification and expression of non-coding RNAs during abiotic remains unclear till date. Methodology: Small RNA library was constructed by high throughput sequencing from control and stress tissues. Target genes of identified miRNAs were predicted using psRNATarget and their GO terms were annotated. The results were validated using RT-qPCR.

Еще

Abiotic stress, growth factors, high throughput sequencing, transcription factors

Короткий адрес: https://sciup.org/143182796

IDR: 143182796

Список литературы Exploring high temperature responsive novel non coding RNAS and functional annotations from niger (Guizotia abyssinica)

  • Arenas-Huertero, C., Pérez, B., Rabanal, F., Blanco-Melo, D., De la Rosa, C., Estrada-Navarrete, G., and Reyes, J. L. (2009). Conserved and novel miRNAs in the legume Phaseolus vulgaris in response to stress. Plant molecular biology, 70(4), 385-401.
  • Barozai, M. Y. K., Irfan, M., Yousaf, R., Ali, I., Qaisar, U., Maqbool, A., and Riazuddin, S. (2008). Identification of micro-RNAs in cotton. Plant Physiology and Biochemistry, 46(8-9), 739-751.
  • Barrera-Figueroa, B. E., Gao, L., Diop, N. N., Wu, Z., Ehlers, J. D., Roberts, P. A., and Liu, R. (2011). Identification and comparative analysis of drought-associated microRNAs in two cowpea genotypes. BMC plant biology, 11(1), 127.1-17.
  • Bartel, D. P. (2009). MicroRNAs: target recognition and regulatory functions. Cell, 136(2), 215-233.
  • Bita, C., and Gerats, T. (2013). Plant tolerance to high temperature in a changing environment: scientific fundamentals and production of heat stresstolerant crops. Frontiers in plant science, 4, 273.
  • Ding, D., Zhang, L., Wang, H., Liu, Z., Zhang, Z., and Zheng, Y. (2009). Differential expression of miRNAs in response to salt stress in maize roots. Annals of botany, 103(1), 29-38.
  • Dugas, D. V., & Bartel, B. (2004). MicroRNA regulation of gene expression in plants. Current opinion in plant biology, 7(5), 512-520. and Reyes, J. L. (2009). Conserved and novel miRNAs in the legume Phaseolus vulgaris in
  • Fahlgren, N., Howell, M. D., Kasschau, K. D., Chapman, E. J., Sullivan, C. M., Cumbie, J. S., and microRNAs targeting genes involved in fruit ripening. Genome research, 18(10), 1602-1609.
  • Carrington, J. C. (2007). High-throughput sequencing of Arabidopsis microRNAs: evidence for frequent birth and death of MIRNA genes. PloS one, 2(2), e219.
  • Fujii, H., Chiou, T. J., Lin, S. I., Aung, K., and Zhu, J. K. (2005). A miRNA involved in phosphate-starvation response in Arabidopsis. Current Biology, 15(22), 2038-2043.
  • Griffiths-Jones, S., Grocock, R. J., Van Dongen, S., Bateman, A., and Enright, A. J. (2006). miRBase: microRNA sequences, targets and gene nomenclature. Nucleic acids research, 34 (suppl_1), D140-D144.
  • Jia, X., Wang, W. X., Ren, L., Chen, Q. J., Mendu, V., Willcut, B., and Tang, G. (2009). Differential and dynamic regulation of miR398 in response to ABA and salt stress in Populus tremula and Arabidopsis thaliana. Plant molecular biology, 71(1-2), 51-59.
  • Naik, H. K., & Varadahalli, R. D. (2020). Genomic identification of salt induced microRNAs in niger (Guizotia abyssinica Cass.). Plant gene, 23, 100242.
  • Vierling, E., and Scharf, K. D. (2007). Complexity of the heat stress response in plants. Current opinion in plant biology, 10(3), 310-316.
  • Microarray analysis of transcriptional responses to abscisic acid and salt stress in Arabidopsis thaliana. International Journal of Molecular Sciences, 14(5), 9979-9998.
  • Meyers, B. C., Axtell, M. J., Bartel, B., Bartel, D. P., Baulcombe, D., Bowman, J. L., and Griffiths-Jones, S. (2008). Criteria for annotation of plant MicroRNAs. The Plant Cell, 20(12), 3186-3190.
  • Moxon, S., Jing, R., Szittya, G., Schwach, F., Pilcher, R. L. R., Moulton, V., and Dalmay, T. (2008). Deep sequencing of tomato short RNAs identifies
  • Nageshbabu, R., Jyothi, M. N., and Sharadamma, N. (2013). Expression of miRNAs regulates growth and development of French bean (Phaseolus vulgaris) under salt and drought stress conditions. ISCA Journal of Biological Sciences, 2(1), 52-56.
  • Nageshbabu. R., Jyothi, M.N., Usha, Sharadamma.N,Rai D.V and Devaraj V. R. (2014) Identification of miRNAs from French bean (Phaseolus vulgaris) under low nitrate stress. Turk J Biochem, 39 (1),1-8.
  • Naya, L., Paul, S., Valdés-López, O., Mendoza-Soto, A. B., Nova-Franco, B., Sosa-Valencia, G., and Hernández, G. (2014). Regulation of copper homeostasis and biotic interactions by microRNA 398b in common bean. PLoS One, 9(1), e84416.
  • Pashkovskiy, P. P., and Ryazansky, S. S. (2013). Biogenesis, evolution, and functions of plant microRNAs. Biochemistry (Moscow), 78(6), 627637.
  • Shen, J., Xie, K., and Xiong, L. (2010). Global expression profiling of rice microRNAs by one-tube stem-loop reverse transcription quantitative PCR revealed important roles of microRNAs in abiotic stress responses. Molecular Genetics and Genomics, 284(6), 477-488.
  • Shinozaki, K., and Yamaguchi-Shinozaki, K. (2007). Gene networks involved in drought stress response and tolerance. Journal of experimental botany, 58(2), 221-227.
  • Sunkar, R., Chinnusamy, V., Zhu, J., and Zhu, J. K. (2007). Small RNAs as big players in plant abiotic stress responses and nutrient deprivation. Trends in plant science, 12(7), 301-309.
  • Sunkar, R., Kapoor, A., and Zhu, J. K. (2006). Posttranscriptional induction of two Cu/Zn superoxide dismutase genes in Arabidopsis is mediated by downregulation of miR398 and important for oxidative stress tolerance. The Plant Cell, 18(8), 2051-2065.
  • Tagami, Y., Inaba, N., Kutsuna, N., Kurihara, Y., and Watanabe, Y. (2007). Specific enrichment of miRNAs in Arabidopsis thaliana infected with Tobacco mosaic virus. DNA research, 14(5), 227233.
  • Trindade, I., Capitäo, C., Dalmay, T., Fevereiro, M. P., & Dos Santos, D. M. (2010). miR398 and miR408 are up-regulated in response to water deficit in Medicago truncatula. Planta, 231(3), 705-716.
  • Tuskan, G. A., DiFazio, S., Jansson, S., Bohlmann, J., Grigoriev, I., Hellsten, U., and Schein, J. (2006). The genome of black cottonwood, Populus trichocarpa (Torr. & Gray). Science, 313(5793), 1596-1604.
  • Valdés L., O. ., Huertero, C. A., ., Ramirez, M., Girard, L., Sanchez, F., Vance, C. P., and Hernandez, G. (2008). Essential role of MYB transcription factor: PvPHR1 and microRNA: PvmiR399 in phosphorus deficiency signalling in common bean roots. Plant, Cell & Environment, 31(12), 1834-1843.
  • Valdés L, O., Yang, S. S., Aparicio F. R., Graham, P. H., Reyes, J. L., Vance, C. P., and Hernández, G. (2010). MicroRNA expression profile in common bean (Phaseolus vulgaris) under nutrient deficiency stresses and manganese toxicity. New Phytologist, 187(3), 805-818.
  • Wang, Q. L., and Li, Z. H. (2007). The functions of microRNAs in plants. Front Biosci, 12, 3975-3982.
  • Xin, M., Wang, Y., Yao, Y., Xie, C., Peng, H., Ni, Z., and Sun, Q. (2010). Diverse set of microRNAs are responsive to powdery mildew infection and heat stress in wheat (Triticum aestivum L.). BMC plant biology, 10(1), 1-11.
  • Yu, X., Wang, H., Lu, Y., de Ruiter, M., Cariaso, M., Prins, M., and He, Y. (2012). Identification of conserved and novel microRNAs that are responsive to heat stress in Brassica rapa. Journal of Experimental Botany, 63(2), 1025-1038.
  • Zhang, N., Yang, J., Wang, Z., Wen, Y., Wang, J., He, W., and Wang, D. (2014). Identification of novel and conserved microRNAs related to drought stress in potato by deep sequencing. PloS one, 9(4), e95489.
  • Zhang, Y. (2005). miRU: an automated plant miRNA target prediction server. Nucleic acids research, 33(suppl_2), W701-W704.
  • Zhou, Z. S., Wang, S. J., and Yang, Z. M. (2008). Biological detection and analysis of mercury toxicity to alfalfa (Medicago sativa) plants. Chemosphere, 70(8), 1500-1509.
  • Zhou, Z. S., Zeng, H. Q., Liu, Z. P., and Yang, Z. M. (2012). Genome wide identification of Medicago truncatula microRNAs and their targets reveals their differential regulation by heavy metal. Plant, cell & environment, 35(1), 86-99.
  • Zuker, M. (2003). Mfold web server for nucleic acid folding and hybridization prediction. Nucleic acids research, 31(13), 3406-3415.
Еще
Статья научная