Expression of circadian genes in dietary stress induced Drosophila melanogaster
Автор: Sanjay V., Malathi R.
Журнал: Журнал стресс-физиологии и биохимии @jspb
Статья в выпуске: 1 т.21, 2025 года.
Бесплатный доступ
Circadian rhythm, the 24-hour cycles in physiological processes, are governed by circadian genes. In Drosophila melanogaster (fruit flies), these genes regulate various biological functions, including metabolism, sleep-wake cycles, and aging. This study explores the expression of circadian genes under different dietary stress conditions, including high fat, high sugar, high alcohol, high protein, and starvation diets. In Drosophila , Period, Timeless, Clock, and Cycle are the primary circadian genes, which play crucial roles in maintaining these rhythms. The regulatory mechanisms involve feedback loops where proteins encoded by these genes interact to regulate their own expression and that of other genes. Dietary stress can significantly impact circadian gene expression, leading to disruptions in the circadian clock and metabolic pathways. High fat and high sugar diets, for instance, can induce metabolic dysregulation and obesity, while high alcohol intake affects liver function and metabolism. Starvation and high protein diets also alter metabolic pathways, potentially impacting aging and lifespan. This study investigates these impacts at the molecular level, highlighting the intersection between dietary stress, circadian gene expression, and aging signaling pathways.
Circadian rhythm, drosophila melanogaster, high sugar diet, high starvation diet, hyperglycemia, transcription based feedback loops
Короткий адрес: https://sciup.org/143183769
IDR: 143183769
Список литературы Expression of circadian genes in dietary stress induced Drosophila melanogaster
- Arif Y.K., Singh P., Siddiqui H., Bajguz A. and Hayat S. (2020). Salinity induced physiological and biochemical changes in plants: An omic approach towards salt stress tolerance. Plant Physiol. Biochem., 156, 64-77.
- Baskaran P., Rajeswari B.R. and Jayabalan N. (2006). Development of an In Vitro Regeneration System in Sorghum [Sorghum bicolor (L.) Moench] using Root Transverse Thin Cell Layers. Turkish J. Botany. 30, 1-9.
- Belide S., Vanhercke T., Petrie J.R. and Singh S.P. (2017). Robust genetic transformation of sorghum (Sorghum bicolor L.) using differentiating embryogenic callus induced from immature embryos. Plant Methods,13,109.
- Bhaskaran S. and Smith R.H. (2006). Control of morphogenesis in sorghum by 2,4-D and cytokinins. Ann Bot., 64.
- Brar, D. S., Rambold, S., Gamborg, O., & Constabel, F. (1979). Tissue culture of corn and sorghum. Zeitschrift für Pflanzenphysiologie, 95(5), 377-388.
- Ceasar S.A. and Ignacimuthu S. (2008). Efficient somatic embryogenesis and plant regeneration from shoot apex explants of different Indian genotypes of finger millet (Eleusine coracana (L.) Gaertn.). In Vitro Cell Dev Biol-Plant, 44, 427-435.
- Chen X., Li O., Shi L., Wu X., Xia B. and Pei Z. (2015). To establish the regeneration system of sweet sorghum immature embryos. Adv. Appl. Biotechnol., 333,83–91.
- Chraibi K.M., Latche A., Roustan J.P. and Fallot J. (1991). Stimulation of shoot regeneration from cotyledons shoot regeneration from cotyledons of Helianthus annus by ethylene inhibitors; silver and cobalt. Plant Cell Rep., 10, 204-207.
- Do P.T., Lee H., Mookkan M., Folk W.R. and Zhang Z.J. (2016). Rapid and efficient Agrobacterium-mediated transformation of sorghum (Sorghum bicolor) employing standard binary vectors and bar gene as a selectable marker. Plant Cell Rep., 35, 2065–2076.
- Doganlar Z.B.P. and Yurekli F. (2009). Interactions between cadmium and phytochelatin accumulation in two different sunflower cultivars. Fresenius Environ Bull., 18, 304–310.
- Drouhot S., Raoul F., Crini N., et al., (2014). Responses of wild small mammals to arsenic pollution at a partially remediated mining site in Southern France. Sci. Total Environ., 470–471, 1012–1022. https://doi.org/10.1016/j.scitotenv.2013.10.053
- Elkonin L.A., Lopushanskaya R.F. and Pakhomova N.V. (1996). Embryogenic callus of Sorghum (Sorghum bicolor (L.) Moench) by amino acids. Maydica. 40, 153-157.
- Epelde L., Mijangos I., Becerril J.M. and Garbisu C. (2009). Soil microbial community as bioindicator of the recovery of soil functioning derived from metal phytoextraction with sorghum. Soil Biol. Biochem., 41, 1788–1794.
- Espinoza-Sánchez E. A., Sánchez-Peña Y.A., Torres-Castillo J.A., García-Zambrano E.A., Ramírez J.T., Zavala-García F. and Sinagawa-García S.R. (2018). Somatic embryogenesis induction from immature embryos of Sorghum bicolor L. (Moench). Phyton-Int. J. Exp. Bot., 87, 105–112.
- Fawzy E.M. (2008). Soil remediation using in situ immobilization techniques. Chemistry and Ecology, 24(2), 147-156.
- George L. and Eapen S. (1989). Callus growth and plant regeneration in some Indian cultivates of Sorghum. Current Science, 58, 308-310.
- Gismera M.J., Lacal J., daSilver P., Garcia R., Sevilla M.T. and Procopio J.R. (2004). Study of metal fractionation in river sediments. A comparison between kinetic and sequential extraction procedures. Environ. Pollut., 127, 175-182.
- Gnansounou E., Dauriat A. and Wyman C.E. (2005). Refining sweet sorghum to ethanol and sugar: Economic trade-offs in the context of North China. Bioresour. Technology, 96, 985-1002.
- Grootboom A.W., Mkhonza N.L., O’Kennedy M.M., Chakauya E., Kunert K. and Chikwamba R.K. (2008). In vitro culture and plant regeneration of sorghum genotypes using immature zygotic embryos as plant source. Int. J. Bot., 4, 450–455.
- Gupta S., Khanna V.K., Rameshwar S. and Garg G.K. (2006). Strategies for overcoming genotypic limitations of in vitro regeneration and determination of genetic components of variability of plant regeneration traits in sorghum. PCTOC. 86:376-388.
- Gurel S, Gurel E, Miller TI, Lemaux PG (2012) Agrobacterium-mediated transformation of Sorghum bicolor using immature embryos. Methods Mol. Biol., 847, 109–122.
- Hadebe S.T., Modi A.T. and Mabhaudhi T. (2017). Drought tolerance and water use of cereal crops: a focus on sorghum as a food security crop in sub-Saharan Africa. Journal of Agronomy and Crop Science, 203, 177–191.
- Harshavardhan D., Rani T.S., Ulaganathan S. and Seetharama N. (2002). An improved protocol for regeneration of Sorghum bicolor from Isolated Shoot Apices. Plant Biotechnol., 19(3),163-171.
- Hernandez L.E. and Cooke D.T. (1997). Modifications of root plasma membrane lipid composition of cadmium treated Pisum sativum. J. Exp. Bot., 48, 1375–1381.
- Hossain M.A., Hasanuzzaman M. and Fujita M. (2010). Upregulation of antioxidant and glyoxalase systems by exogenous glycine betaine and proline in mung bean confer tolerance to cadmium stress. PMBP, 16(3), 259-272.
- Huang R. (2018). Research progress on plant tolerance to soil salinity and alkalinity in sorghum. Journal of Integrative Agriculture, 17, 739–746.
- Jha P., Yadav C.B., Anjaiah V. and Bhat V. (2009). In vitro plant regeneration through somatic embryogenesis and direct shoot organogenesis in Pennisetum glaucum (L.) R, Br. In vitro Cell Dev. Biol. Plant, 45, 145-154.
- Jogeswar G., Ranadheer D., Anjaiah V. and Kishor P.B.K. (2007). High frequency somatic embryogenesis and regeneration in different genotypes of Sorghum bicolor (L.) Moench from immature inflorescence explants. In Vitro Cell Development Biology Plant, 43,159-166.
- Kingsley A.P. and Ignacimuthu S. (2014). Enhanced plant regeneration involving somatic embryogenesis from shoot tip explants of Sorghum bicolor (L.) Moench. Asian J. Plant Sci. Res., 4, 26-34.
- Kishore S.N., Visarada K.B.R.S., Lakshmi A.Y., Pashupatinath E., Rao S.V. and Seetharama N. (2006). In vitro culture methods in Sorghum with shoot tips the explant Material. Plant Cell Reports, 25, 174–182.
- Kuriakose S.V. and Prasad M.N.V. (2008). Cadmium stress affects seed germination and seedling growth in Sorghum bicolor (L.) Moench by changing the activities of hydrolyzing enzymes. Plant Growth Regul., 54, 143–156.
- Kuruvinashetti M.S., Patil V.M., Sumangala B. and Maheshwar H. (1998). High frequency plant regeneration from embryogenic callus cultures in genus Sorghum. IJAS, 68(1), 27-28.
- Liu D., Cao X., Zhang H., Liu Z., Yang J. and Wang K. (2014). Effects of Pb. Cd, stress on the growth and Pb, Cd uptake of forage sorghum. Acta AgrestiaSinica, 22(4), 776-782.
- Marchiol L., Fellet G., Perosa D. and Zerbi G. (2007). Removal of trace metals by Sorghum bicolor and Helianthus annuus in a site polluted by industrial wastes: a field experience. Plant Physiol.Biochem., 45, 379–387.
- McKinnon C., Gunderson G. and Nabors M.W. (1986). Plant regeneration by somatic embryogenesis from callus cultures of sweet sorghum. Plant Cell Rep., 5, 349-51.
- Michel-López C.Y., Espadasy G.F., Fuentes O.G., Santamaría J.M., González-Mendoza D., Ceceña-Duran C. and Grimaldo J.O. (2016). Bioaccumulation and effect of cadmium in the photosynthetic apparatus of Prosopis juliflora. Chem. Speciat. Bioavailab., 28, 1–6.
- Mishra A. and Khurana P. (2003). Genotype dependent somatic embryogenesis and regeneration from leaf base cultures of Sorghum bicolor. JPBB, 12, 53-56.
- Murashige T. and Skoog F. (1962). A revised medium for rapid growth and bioassays with tobacco tissue cultures. Physiol. Plant, 15, 473–497.
- Muratova A., Lyubun Y., German K. and Turkovskaya O. (2015). Effect of cadmium stress and inoculation with a heavy-metal-resistant bacterium on the growth and enzyme activity of Sorghum bicolor. Environ. Sci. Pollut. Res., Mythili P., Madhavi A., Reddy V.D. and Seetharam N. (2001). Efficient regeneration of pearl millet Pennisetum glaucum (L.) from shoot tip cultures. Indian J. Exp. Biol., 39, 1274–1279.
- Nayak P. and Sen S.K. (1989). Plant regeneration through somatic embryogenesis from suspension cultures of a minor millet, Paspalum scrobiculatum L. Plant Cell Rep., 8, 296–299.
- Nguyen T., Thu T.T., Claeys M. and Angenon G. (2007). Agrobacterium- mediated transformation of sorghum (Sorghum bicolor (L.) Moench) using an improved in vitro regeneration system. PCTOC, 91,155-164.
- Nirwan R.S. and Kothari S.L. (2004). High frequency shoot organogenesis in Sorghum bicolor (L.) Moench. JPBB, 13, 149-152.
- Okem A., Moyo M., Stirk W., Finnie J. and Van S.J. (2016). Investigating the effect of Cd and aluminium on growth and stress-induced responses in the micropropagated medicinal plant Hypoxishemero callidea. Plant Biol., 18, 805–815.
- Omer R.A., Suliman S. and Beshi M.M. (2021). Regeneration of Sorghum through Tissue Culture Techniques. Int. J. Genetic Engineering, 9(1), 16-20.
- Patnaik D., Mahalakshmi A. and Khurana P. (2005). Effect of water stress and heavy metals on induction of somatic embryogenesis in wheat leaf base cultures. Ind. J. Exp. Bio., 43, 740-745.
- Pola S.R. and Mani S.N. (2006). Somatic embryogenesis and plantlet regeneration in Sorghum bicolor (L.) Moench, from leaf segments. JCMB, 5(2), 99-107.
- Prunhauser L. and Gyulai G. (1993). Effect of copper on shoot and root regeneration in wheat, triticale, rape and tobacco tissue cultures. PCTOC, 35, 131-139.
- Radchuk V., Radchuk R., Pirko Y., Vankova R. and Gaudinova A. (2012). A somaclonal line SE7 of finger millet (Eleusine coracana) exhibits modified cytokinin homeostasis and increased grain yield. JXB, 63, 5497–5506.
- Rao A.M., Sree K.P. and Kishor P.B.K. (1995). Enhanced plant regeneration in grain and sweet sorghum by asparagine, proline and cefotaxime. PCR. 15:72-75.
- Rascio N. and Navari-Izzo F. (2011). Heavy metal hyper accumulating plants: how and why do they do it? And what makes them so interesting? Plant Science, 180(2), 169-181.
- Rooney W.L., Blumenthal J., Bean B. and Mullet J.E. (2007). Designing sorghum as a dedicated bioenergy feedstock. Biofuels, Bioproducts and Biorefining, 1, 147-157.
- Roustan J.P., Latche A. and Fallot J. (1989). Stimulation of Daucus carrota somatic embryogenesis by inhibitors of ethylene synthesis: Cobalt and Nickel. Plant Cell Rep., 8,182.
- Rout G,R,, Samantaray S. and Das P. (1998). The role of nickel on somatic embryogenesis in Setaria italic L., in vitro. Euphytica, 101, 319-324.
- Seetharama N., Sairam R.V. and Rani T.S. (2000). Regeneration of Sorghum bicolor (L.) Moench from shoot tip cultures and field performance of the progeny. PCTOC, 61,169–173.
- Soudek P., Petrová Š., Vaňková R., Song J. and Vaněk T. (2014). Accumulation of heavy metals using Sorghum sp. Chemosphere, 104, 15–24.
- Srivastav S. and Kothari S.L. (2002). Embryonic callus induction and high frequency plant regeneration in pearl millet. Cer. Res. Commun., 30, 69–74.
- Thomas T.D. and Maseena E.A. (2006). Callus induction and plant regeneration in Cardiospermum halicacabum (L.) an important medicinal plant. Scientia Horticulturae, 108,332-336.
- Tiecoura K., Ledoux L. and Dinant M. (2003). Tissue culture of pearl millet. Agronomie Africaine, 15 (3), 105-121.
- Tran T.A. and Popova L.P. (2013). Functions and toxicity of cadmium in plants: recent advances and future prospects. Turk. J. Bot., 37,1–13.
- Varoquaux N., Cole B., Gao C., et al., (2019). Transcriptomic analysis of field droughted sorghum from seedling to maturity reveals biotic and metabolic responses. Proceedings of the National Academy of Sciences, USA 116, 27124–27132.
- Vijayarengan P. (2005). Nitrogen and potassium status of green gram (Vigna radiata) cultivars under nickel stress. Nature Environmental Pollution and Technology, 4(1), 65-69.
- Vijendra PD, Huchappa KM, Lingappa R, Basappa G, Jayanna SG, Kumar V (2016) Physiological and Biochemical Changes in Moth Bean (Vigna aconitifolia L.) under Cadmium Stress. J. Bot., http://dx.doi.org/10.1155/2016/6403938
- Vikrant (2015). Induction of Somatic Embryos from Mature Embryo Culture under Abiotic Stress and Estimation of Proline Status in a Millet Crop, Paspalum scrobiculatum L. IJABR, 6 (1), 96-109.
- Visarada K.B.R.S., SaiKishore N., Balakrishna D. and Rao S.V. (2003). Transient gus expression studies in Sorghum to develop a simple protocol for Agrobacterium mediated genetic transformation. Journal of Genetics and Breeding, 57, 147–154.
- Wuana R.A. and Okieimen F.E. (2011). Heavy metals in contaminated soils: A review of sources, chemistry, risks and best available strategies for remediation. ISRN Ecology, 2011,1-20.
- Xu Z., Wang D., Yang L. and Wei Z. (1984). Somatic embryogenesis and plant regeneration in callus cultured immature inflorescence of Setaria italica. Plant Cell Rep., 3, 144–150.
- Zhuang P., Wensheng S., Zhian L., Bin L., Jintian L. and Jingsong S. (2009). Removal of metals by sorghum plants from contaminated land. J. Environ. Sci., 21,1432–1437.