External boundaries of pole localization region formulation for transfer function with interval-given parameters
Автор: A. V. Tsavnin, S. V. Efimov, S. V. Zamyatin
Журнал: Siberian Aerospace Journal @vestnik-sibsau-en
Рубрика: Informatics, computer technology and management
Статья в выпуске: 3 vol.20, 2019 года.
Бесплатный доступ
In this paper the approach for external boundary of pole localization region formulation for transfer function with interval-given parameters is proposed. The boundary is formulated as analytic piecewise function of characteristic polynomial parameters of the given transfer function. Analytic formulation of external boundary of poles localization region allows to reduce computations since existing methods require iterative numeric calculations of characteristic equation roots with fixed step size for edges mapping or full interval root locus mapping as well. Formulated boundary allows to clearly describe system behavior and calculate variation ranges of performance indexes. In addition, piecewise function that constrains gives new opportunities for parametric controller synthesis for systems introduced by transfer functions with interval-given parameters. The results can find its practical application in aerospace engineering problems of mathematical analysis and synthesis for highly-precise systems of self-direction missiles. In the research the boundary formulation is performed for third order transfer function. Transfer function order was chosen due to the fact that many physical systems and objects can be described mathematically with the third order transfer function, e.g. model of missile target-seeking head with gyro stabilized drive is described with this model. The research was performed on the basis of the following step sequence: firstly, analytical solving of cubic equation applying Cardano’s formula; secondly, interval root locus edges functions obtaining, next external vertexes set obtaining and, finally, external border formulation and plotting.
System analysis, root locus, interval systems, poles localization.
Короткий адрес: https://sciup.org/148321692
IDR: 148321692 | DOI: 10.31772/2587-6066-2019-20-3-327-332
Список литературы External boundaries of pole localization region formulation for transfer function with interval-given parameters
- Ezangina T. A., Gayvoronskiy S. A., Efimov S. V. Сonstruction of Interval Polynomial Ensure the Specified Degree of Robust Stability. 2014 CACS International Automatic Control Conference (CACS 2014), Taiwan, 2014, P. 292–295.
- Gayvoronskiy S. A., Ezangina T. A., Pushkarev M. I. The interval-parametric synthesis of a linear controller based on the coefficient parameters of robust stability and oscillation. 15th International conference on Sciences and Techniques of Automatic Control & computer engineering – STA’2014. Tunisia, 2014, P. 754–757.
- Polyak B. T., Scherbakov P. S. Robastnaya ustoychivost' i upravlenie [Robust Stability and Control]. Moscow, Nauka Publ., 2002, 303 p.
- Jolen L., Kiefer M., Didrit O., Walter E. Applied Interval Analysis. Springer-Verlag London, 2001, 468 p.
- Ross Barmish B. New Tools for robustness of linear systems. Macmillan Puiblishing Company New York, 1994, 394 p.
- Zhmud V., Zavorin A. The Design of the Control System for Object with Delay and Interval-Given Parameters. 2015 International Siberian Conference on Control and Communications (SIBCON). Russia, 2015, P. 1–6.
- Weinmann A. Uncertain Models and Robust Control. Springer-Verlag Wien GmbH, 1991, 722 p.
- Ackermann J. Robust Control. The parameter Space Approach 2nd ed. Springer-Verlag London, 2002, 483 p.
- Yi-Wei Tu, Ming-Tzu Ho. Robust low-order controller synthesis for model matching of interval plants and its application to servo motor control. 18th IEEE International Conference on Control Applications Part of 2009 IEEE Multi-conference on Systems and Control. Russia, 2009, P. 968–973.
- Korn G. A., Korn T. A. Mathematical Handbook for scientists and engineers. Definitions, theorems and formulas for reference and review. Second, enlarged and revised edition. McGraw-Hill Book Company, 1968, 720 p.
- Bhattacharyya S. P., Chapellat H. Robust control: the parametric approach. L.H. Keel – Prentice Hall, 1995.
- Barmish B. R., Tempo R. The robust root locus. Automatica. 1990, Vol. 26, B2, P. 283–292.
- Uderman E. G. Metod kornevogo godografa v teorii avtomaticheskikh system [The root hodograph method in the theory of automatic systems]. Moscow, Nauka Publ., 1972, 448 p.
- Sukhodoev M. S., Gayvoronskiy S. A, Zamyatin S. V. [Analysis and synthesis of robust automatic control systems in Matlab]. Izvestiya Tomskogo politekhnicheskogo universiteta. 2008, Vol. 312, No. 5, P. 61–65 (In Russ.).
- Sukhodoev M. S. Kornevoy analiz i sintez sistem s interval'nymi parametrami na osnove vershinnykh
- kharakteristicheskikh polinomov. Kand. Diss. [Root analysis and synthesis of systems with interval parameters based on vertex characteristic polynomials. Cand. Diss.]. Tomsk, 2008.