Fabrication of W nanodot and nitrogen codecorated carbon skeleton for hydrogen evolution reaction
Автор: Yange Wang, Yechen Wang, Jing Bai, Sibin Duan, Rongming Wang, Woon-Ming Lau
Журнал: Нанотехнологии в строительстве: научный интернет-журнал @nanobuild
Рубрика: Результаты исследований ученых и специалистов
Статья в выпуске: 6 т.14, 2022 года.
Бесплатный доступ
Metal dots-nitrogen-carbon catalysts have become a hot topic in recent years because of special coordination environment. Herein, for the study the W nanodots and nitrogen co-decorated carbon skeleton (W@NC) was prepared for hydrogen evolution reaction (HER). In particular, NaCl templates not only restrict the growth of nanodots, but also improve the purity of phase. By optimizing the feeding ratio of ammonium metatungstate, W nanodots (the size is about 1.2 ± 0.6 nm) dispersed well on N-doped C skeleton, and this special structure could effectively promote electron transfer and ion diffusion during HER process. As a result, the optimized W@NC hybrids exhibited excellent HER performance in alkaline media with a rather low over-potential (228 mV at 10 mA cm-2) and outstanding durability over 10 h.
W nanodots, n-doped carbon skeleton, nacl matrix, drying at temperatures below zero degrees, hydrogen evolution reaction
Короткий адрес: https://sciup.org/142236273
IDR: 142236273 | DOI: 10.15828/2075-8545-2022-14-6-455-465
Список литературы Fabrication of W nanodot and nitrogen codecorated carbon skeleton for hydrogen evolution reaction
- Hu Y., Yu B., Li W.X., Ramadoss M., Chen Y.F. W2C nanodot-decorated CNT networks as a highly efficient and stable electrocatalyst for hydrogen evolution in acidic and alkaline media. Nanoscale. 2019: 11(11): 4876-4884. https://doi.org/10.1039/c8nr10281c
- Shi M.Q., Jiang Z.Z., Mei B.B., Li Y.Y., Sun F.F., Yu H.S., Xu Y.H. Tuning the hydrogen evolution performance of 2D tungsten disulfide by interfacial engineering. J. Mater. Chem. A. 2021: 9(11): 7059-7067. https://doi.org/10.1039/d0ta10673a
- Shan A.X., Teng X.A., Zhang Y.,Zhang P.F., Xu Y.Y., Liu C.R., Li H., Ye H.Y., Wang R.M. Interfacial electronic structure modulation of Pt-MoS2 heterostructure for enhancing electrocatalytic hydrogen evolution reaction. Nano Energy. 2022: 94: 106913. https://doi.org/10.1016/j.nanoen.2021.106913
- Wu Y.H., He H.W. A novel Ni-S-W-C electrode for hydrogen evolution reaction in alkaline electrolyte. Mater. Lett. 2019: 209: 532-534. https://doi.org/10.1016/j.matlet.2017.08.086
- Lin Z.P., Xiao B.B., Wang Z.P., Tao W.Y., Shen S.J., Huang L.A., Zhang J.T., Meng F.Q., Zhang Q.H., Gu L., Zhong W.W. Planar-coordination PdSe2 nanosheets as highly active electrocatalyst for hydrogen evolution reaction. Adv. Funct. Mater. 2021: 31(32): 2102321. https://doi.org/10.1002/adfm.202102321
- Li C.F., Zhao J.W., Xie L.J., Wu J.Q., Li G.R. Water adsorption and dissociation promoted by Co*-/N-C*- biactive sites of metallic Co/N-doped carbon hybrids for efficient hydrogen evolution. Appl. Catal. B-Environ. 2021: 282: 119463. https://doi.org/10.1016/j.apcatb.2020.119463
- Yang C.F., Zhao R., Xiang H., Wu J., Zhong W.D., Li W.L., Zhang Q., Yang N.J., Li X.K. Ni-activated transition metal carbides for efficient hydrogen evolution in acidic and alkaline solutions. Adv. Energy Mater. 2020: 10(37): 2002260. https://doi.org/10.1002/aenm.202002260
- Li X.F., Liu Y.J., Chen H.B., Yang M., Yang D.G., Li H.M., Lin Z.Q. Rechargeable Zn-air batteries with outstanding cycling stability enabled by ultrafine FeNi nanoparticles-encapsulated N-doped carbon nanosheets as a bifunctional electrocatalyst. Nano Lett. 2021: 21(7): 3098-3105. https://doi.org/10.1021/acs.nanolett.1c00279
- Zhang Z.H., Yang X.N., Liu K.H., Wang R.M. Epitaxy of 2D Materials toward Single Crystals. Adv. Sci. 2022: 9(8): 2105201. https://doi.org/10.1002/advs.202105201
- Bisen O.Y., Yadav A.K., Nanda K.K. Self-organizedsingle-atom tungsten supported on the N-doped carbon matrix for durable oxygen reduction. ACS Appl. Mater. Inter. 2020: 12(39): 43586-43595. https://doi.org/10.1021/acsami.0c10234
- Qu Y.T., Wang L.G., Li Z.J., Li P., Zhang Q.H., Lin Y., Zhou F.Y., Wang H.J., Yang Z.K., Hu Y.D., Zhu M.Z., Zhao X.Y., Han X., Wang C.M., Xu Q., Gu L., Luo J., Zheng L.R., Wu Y.E. Ambient synthesis of single-atom catalysts from bulk metal via trapping of atoms by surface dangling bonds. Adv. Mater. 2019: 31(44): 1904496-1902503. https://doi.org/10.1002/adma.201904496
- Zhang L.L., Liu D.B., Muhammad Z., Wan F., Xie W., Wang Y.J., Song L., Niu Z.Q., Chen J. Single nickel atoms on nitrogen-doped graphene enabling enhanced kinetics of lithium-sulfur batteries. Adv. Mater. 2019: 31(40): 1903955. https://doi.org/10.1002/adma.201903955
- Zhang E.H., Wang T., Yu K., Liu J., Chen W.X., Li A., Rong H.P., Lin R., Ji S.F., Zheng X.S., Wang Y., Zheng L.R., Chen C., Wang D.S., Zhang J.T., Li Y.D. Bismuth single atoms resulting from transformation of metal-organic frameworks and their use as electrocatalysts for CO2 reduction. J. Am. Chem. Soc. 2019: 141(42): 16569-16573. https://doi.org/10.1021/jacs.9b08259
- Wei R.C., Gu Y., Zou L.L., Xi B.J., Zhao Y.X., Ma Y.N., Qian Y.T., Xiong S.L., Xu Q. Nanoribbon superstructures of graphene nanocages for efficient electrocatalytic hydrogen evolution. Nano Lett. 2020: 20(10): 7342-7349. https://doi.org/10.1021/acs.nanolett.0c02766
- Zhao L., Zhang Y., Huang L.B., Liu X.Z., Zhang Q.H., He C., Wu Z.Y., Zhang L.J., Wu J., Yang W., Gu L., Hu J.S., Wan L.J. Cascade anchoring strategy for general mass production of high-loading single-atomic metal-nitrogen catalysts. Nat. Commun. 2019: 10: 1278. https://doi.org/10.1038/s41467-019-09290-y
- Liu Z.Z., Zhang X.M., Song H., Yang Y.X., Zheng Y., Gao B., Fu J.J., Chu P.K., Huo K.F. Electronic modulation between tungsten nitride and cobalt dopants for enhanced hydrogen evolution reaction at a wide range of pH. ChemCatChem. 2020: 12(11): 2962-2966. https://doi.org/10.1002/cctc.202000391
- Zhang J., Chen J.W., Luo Y., Chen Y.H., Wei X.Y., Wang G., Wang R.L. Sandwich-like electrode with tungsten nitride nanosheets decorated with carbon dots as efficient electrocatalyst for oxygen reduction. Appl. Surf. Sci. 2019: 466: 911-919. https://doi.org/10.1016/j.apsusc.2018.10.116
- Han X.F., Batool N., Wang W.T., Teng H.T., Zhang L., Yang R., Tian J.H. Templated-assisted synthesis of structurally ordered intermetallic Pt3Co with ultralow loading supported on 3D porous carbon for oxygen reduction reaction. ACS Appl. Mater. Inter. 2021: 13(31): 37133-37141. https://doi.org/10.1021/acsami.1c08839
- Wu Q., Liang J., Yi J.D., Shi P.C., Huang Y.B., Cao R. Porous nitrogen/halogen dual-doped nanocarbons derived from imidazolium functionalized cationic metal-organic frameworks for highly efficient oxygen reduction reaction. Sci. China Mater. 2018: 62(5): 671-680. https://doi.org/10.1007/s40843-018-9364-5
- Teng X.A., Shan A.X., Zhu Y.C., Wang R.M., Lau W.M. Promoting methanol-oxidation-reaction by loading PtNi nano-catalysts on natural graphitic-nano-carbon. Electrochim. Acta. 2020: 353: 136542. https://doi.org/10.1016/j.electacta.2020.136542
- He D.Q., Xiang J.L., Zha C.Y., Wu R., Deng J., Zhao Y.W., Xie H.G., Liu Y., Wang P.C., Wang W., Yin Y., Qin T.S., Zhu C., Rao Z.H., Wang L., Huang W. The efficient redox electron transfer and powered polysulfide confinement of carbon doped tungsten nitride with multi-active sites towards high-performance lithium-polysulfide batteries. Appl. Surf. Sci. 2020: 525: 146625. https://doi.org/10.1016/j.apsusc.2020.146625
- Tong R., Qu Y.J., Zhu Q., Wang X.N., Lu Y.H., Wang S.P., Pan H. Combined experimental and theoretical assessment of WXy (X = C, N, S, P) for hydrogen evolution reaction. ACS Appl. Energy Mater. 2020: 3(1): 1082-1088. https://doi.org/10.1021/acsaem.9b02114
- Yan H.J., Meng M.C., Wang L., Wu A.P., Tian C.G., Zhao L., Fu H.G. Small-sized tungsten nitride anchoring into a 3D CNT-rGO framework as a superior bifunctional catalyst for the methanol oxidation and oxygen reduction reactions. Nano Res. 2015: 9(2): 329-343. https://doi.org/10.1007/s12274-015-0912-x
- Ling Y., Kazim F., Ma S.X., Zhang Q., Qu K.G., Wang Y.G., Xiao S.L., Cai W.W., Yang Z.H. Strain induced rich planar defects in heterogeneous WS2/WO2 enable efficient nitrogen fixation at low overpotential. J. Mater. Chem. A. 2020: 8(26): 12996-13003. https://doi.org/10.1039/c9ta13812a
- Cheng H.F., Klapproth M., Sagaltchik A., Li S., Thomas A. Ordered mesoporous WO2.83: Selective Reduction Synthesis, Exceptional localized surface plasmon resonance and enhanced hydrogen evolution reaction activity. J. Mater. Chem. A. 2018: 6(5): 2249-2256. https://doi.org/10.1039/c7ta09579a
- Lv C.C., Yan G.Y., Wang X.B., Gao L.J., Xu S.C., San X.Y., Wang S.F., Li Y.G., Huang Z.P. Ni loaded on Ndoped carbon encapsulated tungsten oxide nanowires as an alkaline-stable electrocatalyst for water reduction. Sustain. Energy. Fuels. 2020: 4(2): 788-796. https://doi.org/10.1039/c9se00616h
- Zhang H.F., Pan Q., Sun Z.P., Cheng C.W. Three-dimensional macroporous W2C inverse opal arrays for the efficient hydrogen evolution reaction. Nanoscale. 2019: 11(24): 11505-11512. https://doi.org/10.1039/c9nr03548f
- Feng Q., Xiong Y.Y.H., Xie L.J., Zhang Z., Lu X.E., Wang Y.J., Yuan X.Z., Fan J.T., Li H., Wang H.J. Tungsten carbide encapsulated in grape-like N-doped carbon nanospheres: one-step facile synthesis for low-cost and highly active electrocatalysts in proton exchange membrane water electrolyzers. ACS Appl. Mater. Inter. 2019: 11(28): 25123-25132. https://doi.org/10.1021/acsami.9b04725
- Lin H.L., Liu N., Shi Z.P., Guo Y.L., Tang Y., Gao Q.S. Cobalt-doping in molybdenum-carbide nanowires toward efficient electrocatalytic hydrogen evolution. Adv. Funct. Mater. 2016: 26(31): 5590-5598. https://doi.org/10.1002/adfm.201600915
- Li W.R., Zhao H.F., Li H., Wang R.M. Fe doped NiS nanosheet arrays grown on carbon fiber paper for a highly efficient electrocatalytic oxygen evolution reaction. Nanoscale Adv. 2022: 4(4): 1220-1226. https://doi.org/10.1039/d2na00004k
- Lv Y.P., Duan S.B., Zhu Y.C., Yin P., Wang R.M. Enhanced OER performances of Au@ NiCo2S4 core-shell heterostructure. Nanomaterials. 2020: 10(4): 611. https://doi.org/10.3390/nano10040611
- Lv Y.P., Duan S.B., Zhu Y.C., Guo H.Z., Wang R.M. Interface control and catalytic performances of Au-NiSx heterostructures. Chem. Eng. J. 2020: 382: 122794. https://doi.org/10.1016/j.cej.2019.122794
- Shi J.L., Pu Z.H., Liu Q., Asiri A. M., Hu J.M., Sun X.P. Tungsten nitride nanorods array grown on carbon cloth as an efficient hydrogen evolution cathode at all pH values. Electrochim. Acta. 2015: 154: 345-351. https://doi.org/10.1016/j.electacta.2014.12.096
- Jin H.Y., Zhang H., Chen J.Y., Mao S.J., Jiang Z., Wang Y., A general synthetic approach for hexagonal phase tungsten nitride composites and their application in the hydrogen evolution reaction. J. Mater. Chem. A. 2018: 6(23): 10967-10975. https://doi.org/10.1039/c8ta02595a
- Abbas S.C., Wu J., Huang Y., Babu D.D., Anandhababu G., Ghausi M.A., Wu M., Wang Y., Novel strongly coupled tungsten-carbon-nitrogen complex for efficient hydrogen evolution reaction. Inter. J. Hydrog. Energ. 2018: 43(1): 16-23. https://doi.org/10.1016/j.ijhydene.2017.11.065
- Lv C.C., Wang X.B., Gao L.J., Wang A.J., Wang S.F., Wang R.N., Ning X.K., Li Y.G., Boukhvalov D.W., Huang Z.P., Zhang C. Triple functions of Ni(OH)2 on the surface of WN nanowires remarkably promoting electrocatalytic activity in full water splitting. ACS Catal. 2020: 10(22): 13323-13333. https://doi.org/10.1021/acscatal.0c02891
- Zhao Y.X., Lv C.C., Huang Q.L., Huang Z.P., Zhang C. Self-supported tungsten/tungsten dioxide nanowires array as an efficient electrocatalyst in hydrogen evolution reaction. RSC Adv. 2016: 6(92): 89815-89820. https://doi.org/10.1039/c6ra17194j
- Zhu Y.P., Chen G., Zhong Y.J., Zhou W., Shao Z.P. Rationally designed hierarchically structured tungsten nitride and nitrogen-rich graphene-like carbon nanocomposite as efficient hydrogen evolution electrocatalyst. Adv. Sci. 2018: 5(2): 1700603. https://doi.org/10.1002/advs.201700603
- Latiff N.M., Wang L., Mayorga-Martinez C.C., Sofer Z., Fisher A.C., Pumera M. Valence and oxide impurities in MoS2 and WS2 dramatically change their electrocatalytic activity towards proton reduction. Nanoscale. 2016: 37: 16752-16760. https://doi.org/10.1039/c6nr03086f
- Zhang X.Y., Guo T., Liu T.Y., Lv K.Y., Wu Z.Z., Wang D.Z., Tungsten phosphide (WP) nanoparticles with tunable crystallinity, W vacancies, and electronic structures for hydrogen production. Electrochim. Acta. 2019: 323(10): 134798. https://doi.org/10.1016/j.electacta.2019.134798
- Seo B., Jung G.Y., Kim J.H., Shin T.J., Jeong H.Y., Kwak S.K., Joo S.H. Preferential horizontal growth of tungsten sulfide on carbon and insight into active sulfur sites for the hydrogen evolution reaction. Nanoscale. 2018: 10(8): 3838-3848. https://doi.org/10.1039/c7nr08161h