Features of GABA-transaminase functioning in Zea mays L. leaves under salinity

Автор: Shakhov Z.N., Anokhina G.B., Eprintsev A.T.

Журнал: Журнал стресс-физиологии и биохимии @jspb

Статья в выпуске: 2 т.20, 2024 года.

Бесплатный доступ

Salt stress has a significant effect on plants, causing a whole range of changes in metabolism. Unfortunately, the mechanisms that ensure the adaptive response of cells in response to salinity have not been sufficiently studied. The study examined changes in the functioning of one of the enzymes of the anaplerotic pathway of the Krebs cycle - GABA shunt - GABA transaminase (GABA-T, EC 2.6.1.19). It has been shown that salt stress caused by incubation of corn seedlings in a 150 mM sodium chloride solution causes activation of GABA transaminase (GABA-T, EC 2.6.1.19). The established increase in GABA-T enzymatic activity in the first hours of incubation in saline solution reaches a maximum at 3 hours of incubation. At the same time, differences are observed in the expression profilees of the GTA-1 and GTA-2 genes, which encode this enzyme in the maize genome. Salinity in the first three hours induces an increase in the expression of the GTA-1 GABA-T gene, while the GTA-2 gene demonstrates an increase in transcriptional activity from 6 to 12 hours of the experiment. An increase in GABA-T enzymatic activity under salinity indicates activation of the GABA shunt to maintain the energy metabolism of the plant cell under stress conditions.

Еще

Gaba transaminase, gaba-shunt, metabolism, salt stress, expression

Короткий адрес: https://sciup.org/143182788

IDR: 143182788

Список литературы Features of GABA-transaminase functioning in Zea mays L. leaves under salinity

  • Abd-Alla A. M., Jones R. A., Abou-Hadid A. F. (1992). Salinity stress alters the vegetative and reproductive growth of cucumber plants.
  • Symposium on Soil and Soilless Media under Protected Cultivation in Mild Winter Climates. 323, 411-422.
  • Alexandrov N. N., Brover, V. V., Freidin, S., Troukhan, M. E., Tatarinova, T. V., Zhang, H., Swaller T.J., Lu Yu-Ping, Bouck J., Flavell J. B., Feldmann, K. A (2009). Insights into corn genes derived from large-scale cDNA sequencing. Plant Mol. Biol. 69, 179.
  • Anokhina G.B. (2022). Analiz mekhanizmov dejstviya stressovyh faktorov na funkcionirovanie fermentov metabolizma 2-oksoglutarata v list'yah kukuruzy : dis. kand. biol. nauk: 1.5.4. ; 1.5.21. - Voronezh State University, Voronezh, 201.
  • Anokhina G. B., Shakhov Z. N., Eprintsev A. T.. (2022). The role of the methyl status of the promoter ssadh1 gene in the regulation of the functioning of succinic semialdehyde dehydrogenase in corn leaves (Zea mays L.) under salt stress. Proceeding of Voronezh state university. Series: Chemistry. Biology. Pharmacy. 4, 44-47.
  • Araujo W. L., Tohge, T., Nunes-Nesi, A., Daloso, D. M., Nimick, M., Krahnert, I., Bunik V.I., Moorhead G. B. G., Fernie, A. R. (2012). Phosphonate analogs of 2-oxoglutarate perturb metabolism and gene expression in illuminated Arabidopsis leaves. Front. Plant Sci. 3, 114.
  • Awad R., Levac, D., Cybulska, P., Merali, Z., Trudeau, V. L., Arnason, J. T. (2007). Effects of traditionally used anxiolytic botanicals on enzymes of the y-aminobutyric acid (GABA) system. Can. J. Physiol. Pharmacol. 85, 933-942.
  • Coleman S. T., Fang, T. K., Rovinsky, S. A., Turano, F. J., Moye-Rowley, W. S. (2001). Expression of a glutamate decarboxylase homologue is required for normal oxidative stress tolerance in Saccharomyces cerevisiae. J Biol Chem. 276, 244250.
  • Eprintsev A. T., V. N. Popov, D. N. Fedorin (2008). Identifikaciya i issledovanie ekspressii genov //Voronezh: Voronezh University Press, 63.
  • Garcia A. B., Engler, J. D. A., Iyer, S., Gerats, T., Van Montagu, M., Caplan, A. B. (1997). Effects of osmoprotectants upon NaCl stress in rice. Plant Physiol. 115, 159-169.
  • Gilliham M., Tyerman S. D. (2016). Linking metabolism to membrane signaling: the GABA-malate connection. Trends Plant Sci. 21, 301.
  • Hichem H., Mounir, D. (2009). Differential responses of two maize (Zea mays L.) varieties to salt stress: changes on polyphenols composition of foliage and oxidative damages. Ind Crops Prod. 30, 144-151.
  • Hussain K., Nisar, M. F., Majeed, A., Nawaz, K., Bhatti, K. H., Afghan, S., Shahazad A., Zia-ul-Hussnian, S. (2010). What molecular mechanism is adapted by plants during salt stress tolerance? AJB 9, 4.
  • Omoto E., Taniguchi M., Miyake H. (2012). Adaptation responses in C4 photosynthesis of maize under salinity //J. Plant Physiol. 169, 469-477.
  • Popova L. P., Stoinova Z. G., Maslenkova L. T. (1995). Involvement of abscisic acid in photosynthetic process in Hordeum vulgare L. during salinity stress. J. Plant Growth Regul. 14, 211-218.
  • Ramesh S. A., Tyerman, S. D., Gilliham, M., Xu, B. (2017). y-Aminobutyric acid (GABA) signalling in plants. CMLS. 74, 1577-1603.
  • Seifikalhor M., Aliniaeifard, S., Hassani, B., Niknam, V., Lastochkina, O. (2019). Diverse role of y-aminobutyric acid in dynamic plant cell responses. Plant Cell Rep. 38, 847-867.
  • Szalai G., Janda T. (2009). Effect of salt stress on the salicylic acid synthesis in young maize (Zea mays L.) plants. J Agron Crop Sci. 195, 165-171.
  • Wang Y., Gu, W., Meng, Y., Xie, T., Li, L., Li, J., Wei, S. (2017). y-Aminobutyric acid imparts partial protection from salt stress injury to maize seedlings by improving photosynthesis and upregulating osmoprotectants and antioxidants. Sci. Rep. 7, 436.
  • Zhang M., Liu, Z., Fan, Y., Liu, C., Wang, H., Li, Y., Xin.Y., Gai Y., Ji, X. (2022). Characterization of GABA-transaminase gene from mulberry (Morus multicaulis) and its role in salt stress tolerance. Genes. 13, 501.
Еще
Статья научная